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ABSTRACT We report the draft genome sequence of Streptococcus agalactiae KALRO-LC1
strain obtained from a mastitis-infected camel in Laikipia County, Kenya. The 2,201,604-bp
draft genome is assembled into 3 contigs with a GC content of 35.87% and is predicted
to contain 1,192 protein-coding sequences.

treptococcus agalactiae (Group B Streptococcus) causes mastitis in camels resulting in

diminished milk production and consequently enormous economic losses that imperil
the livelihoods of pastoralists in northern Kenya (1). Moreover, S. agalactiae causes serious
infections in humans (2, 3). The pathogen is therefore a threat to human and veterinary
health.

We report the draft genome of a S. agalactiae KALRO-LC1 isolate recovered from a
mastitis-infected camel in Laikipia County, Kenya. Milk samples were inoculated on blood
agar containing 5% sheep blood and incubated overnight at 37°C. Colonies with zones
of beta-hemolysis, and that were catalase negative and Gram positive, were cultured in
Edward'’s selective media to ascertain genus type (4). Lancefield grouping confirmed the
isolate as Streptococcus agalactiae (5). The isolated bacteria were cultured on nutrient
agar plates by incubation under aerobic conditions at 37°C for 16 h followed by enrich-
ment of fresh single colonies in 100 mL nutrient broth and incubation under aerobic con-
ditions at 37°C for 16 h with rotation at 200 rpm (6) to a cell density of 0.5 to 0.7 at
ODygyo (7). Genomic DNA was extracted using the QlAamp DNA kit (Qiagen) according
to manufacturer’s instructions. An Oxford Nanopore Technologies (ONT) sequencing
library was then prepared using the manufacturer’s Native Barcoding Expansion 1-12
(EXP-NBD104) in conjunction with the Ligation Sequencing kit (SQK-LSK109), and
sequencing was performed on a MinlON device using R9.4.1 flow cell to give 33,183 raw
reads of Ns, 103 kb. Basecalling of the raw sequence data (fast5) and subsequent demul-
tiplexing was performed using GUPPY v3.6.1 (https://nanoporetech.com). Adaptors were
trimmed using PORECHOP v0.2.4 (8), and NANOFILT v2.5.0 (9) was used for quality filtering
by removing reads <500 bp or with average quality scores of <10. The draft genome
was assembled using UNICYCLER v0.5.0 (10) and quality assessed using QUAST v5.2.0
(11). The contigs were annotated using NCBI's PGAP v6.1 (12). Default parameters were
used for all software unless otherwise specified.

The assembly contained 3 contigs totaling 2,201,604 bp with a GC content of 35.87%,
an Ny, of 2,139,486 bp, and a coverage of 95x. Annotation revealed a total of 2,269 genes
(1,192 coding genes), 23 rRNAs, 85 tRNAs, 3 ncRNAs, and 2 CRISPR arrays.

Using Vaxilen (13), IgPred (14), and AllerTOP v.2 (15), we have delineated several potentially
viable antigenic vaccine candidates (Table 1). Our results will foster further investigations into
the development of a subunit vaccine for S. agalactiae infections.
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TABLE 1 Putative S. agalactiae antigenic vaccine candidates
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NCBI sequence accession

VaxiJen score

Subcellular localization

Transmembrane helices

IgPred prediction

AllerTOP prediction

MCP9189840.1 1.0828 Cell wall 1 1gG Epitope Probable nonallergen
MCP9189846.1 0.9236 Cytoplasmic membrane 1 19G Epitope Probable nonallergen
MCP9189915.1 0.7253 Unknown 0 1gG Epitope Probable nonallergen
MCP9189959.1 0.7667 Cytoplasmic 0 1gG Epitope Probable nonallergen
MCP9189976.1 0.7542 Unknown 0 1gG Epitope Probable nonallergen
MCP9189841.1 1.5040 Cytoplasmic 0 1gG Epitope Probable nonallergen
MCP9189875.1 1.1086 Unknown 0 1gG Epitope Probable nonallergen
MCP9190210.1 1.0150 Unknown 0 19G Epitope Probable nonallergen
MCP9190214.1 1.0590 Unknown 1 1gG Epitope Probable nonallergen
MCP9190551.1 1.0850 Cytoplasmic membrane 0 19G Epitope Probable nonallergen
MCP9190938.1 1.0042 Cytoplasmic membrane 1 1gG Epitope Probable nonallergen
MCP9190954.1 1.0033 Unknown 0 1gG Epitope Probable nonallergen
MCP9190991.1 1.1004 Extracellular 0 1gG Epitope Probable nonallergen
MCP9189842 0.9959 Cell wall 0 1gG Epitope Probable nonallergen
MCP9190131.1 0.9931 Unknown 0 1gG Epitope Probable nonallergen
MCP9190265.1 0.9462 Cytoplasmic 0 1gG Epitope Probable nonallergen
MCP9190286.1 0.9441 Cytoplasmic membrane 4 1gG Epitope Probable nonallergen
MCP9190290.1 0.9461 Cytoplasmic membrane 1 1gG Epitope Probable nonallergen

Data availability. This Whole Genome Shotgun project has been deposited at DDBJ/
ENA/GenBank under accession JANCLS000000000. Raw sequence reads are available at the

Sequence Read Archive (SRA) database under accession SRX16447265.
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