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Tis research study proposes the inclusion of randomness or an error term in the modifed Lee–Carter model, which improves the
traditional Lee–Carter model for modeling and forecasting mortality risk for years in the actuarial science feld. While the
modifed Lee–Carter model points out some of its common shortcomings , it has no distributional assumption that has been
placed on the error/disturbance term. Incorporating a Gaussian distributional assumption on the error term is proposed, and
then, the deep learning technique is used to obtain the parameter estimates. It is a departure from the traditional singular value
decomposition estimation technique for estimating the parameters in the model. Finally, the Bühlmann credibility approach is
incorporated into the model to determine its forecasting precision compared to the classical Lee–Carter model before applied in
actuarial valuations.

1. Introduction

Te Lee–Carter model has become the benchmark stochastic
mortality model applied in many felds when modeling
mortality rates, hedging longevity risk, forecasting, and
predicting mortality risk. Many actuaries, statisticians, and
demographers use the model in stochastic risk modeling
from various actuarial applications. Te conventional [1]
model is defned as follows:

In(m(x, t)) � αx + βxκt + e(x, t), (1)

where m(x, t) and t are the systematic mortality rate and
time, respectively, having two constraints of 􏽐

N
x�1βx � 1 and

􏽐
T
t�1kt � 0.
Te random errors e(x, t) ∼ N(0, σ2t ) and κt

′s known as
mortality indices are observed during the period. Te stated
two constraints ensure that the LCmodel is identifable in its
application. It is not possible to note the values of κt

′s during
computation; hence, the concept of the singular value de-
composition method can be used when estimating the values
of the unknown quantities (αx, βx, and κt∀ all values of x �

1, 2, 3, . . . ., N and t � 1, 2, 3, . . . ., T).

More interestingly, some mortality modeling papers
have misunderstood the model in its operations, for in-
stance, denoting m(x, t) which is commonly defned as
central death rates for a given life aged exactly x for a given
time period of t years shown by [2–5] as

ln(m(x, t)) � αx + βxkt,

􏽘

N

x�1
βx � 1,

􏽘

T

t�1
kt � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

While the model in equation (2) can be pretty confusing
since it states that the general mortality rate m(x, t) is the
death rate from the randomness property of kt

′s. Tis
concept is captured in several papers, such as in [6], Nar-
yongo [7], and [8], where [1] is treated as having no dis-
tribution on the random error e(x, t) as shown in equation
(1). Furthermore, this might be a huge problem as it states
that ln(m(x, t)) � αx + βx ∗ κt is dependent completely
when both are calculated through the similar random
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variable kt, which are central death rates that are dependent
across all age groups with the assumption of ln(m(x, t)) and
ln(m(x, t − 1)) being dependent. Tis assumption becomes
important when determined by the similar mortality trend kt

since the rates are independent across all ages t [9–11]
and [12].

Today, several extensions and applications have been
made, making actuarial science literature rich in terms of
mortality modeling techniques. Also, the freeware statistical
R package has included many packages, namely, “StMoMo,”
“demography,” “acturyr,” and “gnm,” thus helping in
forecasting the rates of future mortality and at the same time
ftting a model of time series especially to the predicted rates
of the mortality index, see [2, 4, 13–17]. Deep learning
mortality modeling has been conducted in [18], thus making
it one of novel methodologies to deal with data paucity in
developing countries.

In this research study, the concept of placing a distribu-
tional assumption on the error or disturbance term is pro-
posed. It is suggested that a normal distributional assumption
on the error term be placed, and then, the deep neural
network techniques be used to train and obtain the parameter
estimates. Besides, the concept of the Bühlmann credibility
approach is introduced to get themortality forecast. Using the
credibility technique, an approach proposed in [19] is found
to enhance the forecasting model precision.

2. Modeling of the Modified Lee–Carter Model

From equation (1), it is proposed to defne the distribution of
the random error term, e(x, t), to be a normal density with
a mean and variance of θ and σ2, respectively, at every age x.
Since there exists a constraint on all the unobserved random
mortality index of kt directly, this ensures that the proposed
model used in modeling is identifable. Te next step is to
estimate the parameters in an environment of limited data
availability like the Kenyan population.

2.1. Deep Neural Network Estimation

2.1.1. Model Parameters. It is suggested that the deep neural
network technique be used to train and obtain the parameter
estimates of the model. Te mean-squared error is a loss
function used in deep neural networks given by

Loss(y, 􏽢y) �
1
n

􏽘

n

i�1
(y − 􏽢y)

2
, (3)

where y and 􏽢y are actual and predicted values, respectively,
from the deep neural network in n observations.

With one input layer having two nodes and a hidden
layer of three nodes, its output node will have a single node
[20]. After training the data, the imputed data in the input
layer will have nodes within the hidden layer taking the
corresponding values from its input layer before multiplying
by a weight wj and adding a corresponding bias of bi1, with 1
representing the layer and i ∈ 1, 2{ } representing its corre-
sponding node [21].

From the above two-tier artifcial neural network, we
want to train the parameters in equation (1) to estimate its
parameters. Te ANN architecture can be presented as;

Te above backpropagation and feedforward pro-
cesses will be repeated many times until the errors are
negligible when estimating the parameters from the ANN
architecture shown in Figure 1. Using python software,
we code and train to estimate the parameters for
estimations.

Deep neural networks often capitalize on the ANN
component. Tey work so well by improving a model since
each node in the hidden layer makes both associations and
grades the importance of the input in determining the nature
of the output. Terefore, the deep network has multiple
hidden layers. In addition, “deep” refers to the layers of the
model being multiple layers deep.

2.1.2. Activation Functions

Defnition 1. Let R(y) be the Rectifed Linear Activation
Unit (ReLU) activation function given by

R(y) �
0 fory< 0,

y fory≥ 0,
􏼨 (4)

where R′(y) �
0 fory< 0
1 fory≥ 0􏼨 , with the values ranging from

0 to ∞.
ReLU defnes the output functions of deep neural

networks.

Defnition 2. Let S(y) be the sigmoid of the activation
function within a deep neural network defned by

S(y) � 1/1 − e− y for S′(y) � φ(y)(1 − φ(y)), with
values ranging from 0 to 1.

Tis sigmoid defnes the output functions of deep neural
networks.

Tese two activation functions are used to provide
nonlinearity without which deep neural networks cannot
model nonlinear relationships of the systematic
mortality risk.

2.1.3. How the above Activation Function Works. An acti-
vation function is a mathematical function that is applied to
the output of a neuron in a neural network. Its purpose is to
introduce nonlinearity into the network, allowing it to learn
more complex patterns. Two activation functions will be
used, namely, the sigmoid function and the ReLU (rectifed
linear unit) function. Each of these functions has a slightly
diferent form and characteristics, but all of them serve to
squash the output of a neuron into a range of values, which is
more useful for the learning process.

In our case, the sigmoid function maps any input value
to a value between 0 and 1, making it useful for modeling
probabilities. Te ReLU function maps any negative input
value to 0 and any positive input value to itself, making it
useful for introducing nonlinearity into the network without
introducing additional complexity.
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In summary, the activation function is an important part of
the architecture of a neural network, and it plays a key role in the
network’s ability to learn and generalize to new data.Te output
data are the force of mortality, In(m(x, t)), calculated from the
input data of survival probabilities of tpx derived from the life
table values for artifcial neural networks.

2.2. Incorporation of the Bühlmann Credibility Approach

2.2.1. Mathematical Preliminaries. From a classical ap-
proach, the latest prediction U is defned as

U � Z(X) +(1 − Z)θ, (5)

where X is defned as the data sample mean, whereas θ is its
general prior mean E(X).

Te Bühlmann credibility estimate or factor Z depends
on the size of the sample n and the ratio of the expected
present value of variance (EPV), and the variance of hy-
pothetical mean (VHM) ratio is defned by K, which can be
used in mortality modeling, see [22–24].

To bemore precise, the value ofZ varies with both the values
of n andK in away thatZ increases as the number of sample size
n increases of the data. Te best estimate for the future value of
􏽢Un+1 � Z(X + (1 − Z)θ), where Z � n/(n + k).

To apply the above concept of the Bühlmann Credibility
approach to the model, ln(m(x, t)) is used to model mor-
tality. Figure 2 shows the curve of the expected value of
ln(m(x, t)) against the time of Kenyan data for both males
and females at diferent ages.

To eliminate the downward trend, let
Y(x, t) � ln(m(x, t)) − ln(m(x, t − 1)) for the values of x �

1, 2, 3 . . . .n and t � 1, 2, 3 . . . ..m during forecasting. Te
Bühlmann credibility approach is used to compare the
values with those of conventional [1], and it is assumed that
􏽢Y(x1, t) and 􏽢Y(x2, t), 􏽢Y(x3, t) . . . .., 􏽢Y(xn−1, t), 􏽢Y(xn, t) are
all independent. Secondly, for values of x � 1, 2, 3 . . . .n, the
distribution of Y(x, t) � ln(m(x, t)) − ln(m(x, t − 1)) and
∀ values of x and t for 􏽢Y(x, t) depends on the risk parameter
X � x, and fnally, Y(x1, t)/X � x, . . . .Y(xn, t)/X � x are
independent for each of x � 1, 2, 3 . . . .n.

Now, the Bühlmann Credibility estimate 􏽢Y(x, t) is ap-
plied as follows:

Y(x, t) � Z × Yx + (1 − Z)􏽢θ, (6)

for values of x � 1, 2, 3 . . . .n and the value of
Z � (n − 1)/(n − 1) + K{ } and K is the ratio of the expected
present value of variance (EPV) and the variance of hy-
pothetical mean (VHM). In terms of parametric estima-
tions, EPV � 􏽢θ � 1/(m􏽐

n
i�1Yx) and VHM � 􏽢υ � 1/(n − 2{

􏽐
n
i�1(Yx − Yx)2)}.

2.2.2. Incorporating the Bühlmann Credibility into the
Modifed LC Model. Te classical paper assumption of the
overall mortality trend is taken following a simple random
walk with a drift ϑ for the prediction of mortality:
κt = κt−1 + ϑ + e(t), where trend errors (e(t)) of the time
follow Gaussian and are independently and identically
distributed (i.i.d.) such that e(t) and t � tx + 1, · · · tm, see
[8]. Te error terms in our proposal are i.i.d. of white
noises satisfying the Martingale structure in the following
equation:

e(x, t)

e(t)
􏼢 􏼣/Ft−1 ∼ N

0

0
􏼢 􏼣,

σ2x 0

0 σ2e
⎡⎢⎣ ⎤⎥⎦

⎧⎨

⎩

⎫⎬

⎭, (7)

where Ft−1 provides the information about the process up to
a time t − 1 and covariances of the two random errors
are zero.

Considering a random variable Wx,t that denotes the
central death rates between time t and t − 1 that means
Wx,t � ln(m(x, t)) − ln(m(x, t − 1)),

Wx,t � βx × kt − kt−1( 􏼁 +△e(x, t), (8)

Wx,t � βx × ϑ + βx × et +△e(x, t), (9)

where the value of x � x1 . . . , xm and t � tx1 + 1, . . . , txm

and ∆e(x, t) ∼ N(0, 2 × σ2x) and from equation (1), it is
leading to Wx,t ∼ N(βxϑ, β2xσ2ε + 2σ2x), which follows the
sum of independent variables of Gaussian distribution.
From the conditional expectation as well as variance of Wx,t,
it is easy to apply the Bühlmann credibility such that θ(x) �

E[Wx,t/X] � βxϑ and Var [Wx,t/X] � β2xσ
2
ε + 2σ2x in the

same order. Since the expectation of value of the stated
hypothetical mean, θ � E[θ(x)] � E[E[Wx,t/X]] �

θ × E[E[Wx,t/X]], and the estimated value of θ denoted as 􏽢θ
is given by

􏽢θ �
􏽢ϑ
n

􏽘

xn

x1

􏽢θx �
􏽢ϑ
n

. (10)

From equation (10), the variance process expected value
denoted by a � E[a(X)] � E[β2x]σ2ε + 2E[σ2x] can be esti-
mated as

􏽢a �
􏽢σ2

n
􏽘

xn

x1

􏽢θ
2
x + 2􏽘

xn

x1

􏽢σ2

m
, (11)

while the hypothetical mean variance c � Var[θ(X)] �

ϑ2.Var[βX] � ϑ2 ∗E[β2X] − E[βX]2. Tis can be estimated
through

input layer
hidden layer 1 hidden layer 2

output layer

Figure 1: Parameter estimation under ANN architecture.
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􏽢a � ϑ2
􏽢ϑ
n

􏽘

xn

x1

θ2x −
1
n

􏽘

xn

x1

θx
⎛⎝ ⎞⎠

2

. (12)

By writing the equation in the form of Z(X) + (1 − Z)μ,
it is easy to estimate the value of 􏽢μ as 􏽢ϑ/n, where Z is the
credibility factor. More data availability from the Kenyan
population means more emphasis is put on the Z values as
the credibility estimate.

3. Data Analysis and Interpretation

To illustrate how this proposed model works, we apply it to
Kenyan mortality data before making statistical inferences/
deductions while noting the variations from the classical [1]
model. To gain a frm conclusion, the population is studied
under central death rates for males and females. Te con-
solidated population is between 20 and 100 years after
projecting it from 2020 to 2050 and using ten-year age lags.
Te lag time values of M � 10, as well as T � 83, are used.

Te statistical R package known as “demography” is used
on the model to obtain estimates for the values of αx, βx, and
kt
′s after data training. Te estimated values values of αx and
βx are tabulated in Tables 1 and 2, respectively, for both
males and females and consolidated mortality rates.

Te proposed inference is applied when ftting models to
both males and females and combined rates of mortality.
Moreover, the use of the “lm” package is applied when
obtaining the proposed deep learning generated estimates
before reporting the estimates for αx’s, βx

′s, θ, and ϕ in
Tables 1 and 2, respectively, for both males and females and
consolidated mortality rates. Although the estimates for the
value of ϕ obtained from the novel method is are similar to
those values derived from the traditional LC method, esti-
mates for θ are diferent for both methodologies since the
new method does not assume the value of 􏽐

T
t�1kt � 0.

Te proposed unit root test is also applied to both males
and females and combined rates of mortality rates, where we
will apply 􏽢σ2e with the value of L � 1/2

��
T

√
,

��
T

√
, 2

��
T

√
and the

values of 􏽢σ2e , which is illustrated in equation (11). It is im-
portant to take a note that equation (11) is given as
k0/T⟶ 0 as T⟶∞.

All of the obtained estimates of variance, test statistics,
and p values are recorded in Tables 3–6, respectively, for
males, females, and consolidated mortality rates. According

to the illustrations, it easy to note that these quantities are
pretty good for L selection. Besides, novel root testing rejects
the hypothesis of the unit root for females and consolidated
mortality rates but refuses to reject the hypothesis of the unit
root especially for male mortality rates.

Ultimately, we examine the soundness/robustness test of
the stated deduction on the unit root hypothesis for the
mortality index by rerunning the above unit root test for
female, male, and consolidated population ages between 20
and 100 years.

4. Numerical Results and Forecasts

To examine the fnite sample performance of the unit root
test and estimators, the model is considered for the value of
M � 10, 􏽢αx, 􏽢βx, and θ estimates obtained from mortality
rates as tabulated in Table 7 for the traditional model. Te
estimates are much higher than under deep learning
methods.

To examine the fnite sample performance of the unit
root test and estimators, the model is considered for the
value of M � 10, 􏽢αx, 􏽢βx, and θ estimates obtained from
mortality rates, as tabulated in Tables 1 and 2. Te values of
e(t, x) are independent of (t). Te values of 􏽢σ2e and σ2e are
tabulated in Tables 1 and 2. With a sample of 10, 000 that are
randomly drawn samples from the model, with a sample size
of T � 60 and 100, the value of ϕ � 1 is considered to yield
the values.

Tables 1 and 2 show the estimates of parameters de-
termined under deep learning techniques after ftting the
model, and SE is the standard error of the model for both
males and females and consolidated rates, respectively. In
addition, Table 2 shows the consolidated rates of mortality
for ages between 20 and 100 under deep learning, which are
lower than those of the traditional method.

By computing the estimators for values of 􏽢αx
′s, 􏽢βx

′
s, θ,

and ϕ within the settings illustrated above before reporting
the mean as well as standard deviation of the above esti-
mators, Tables 1 and 2 show that estimators for those values
of 􏽢αx
′s, 􏽢βx
′s, θ, and ϕ are all correct. Te obtained the unit

root test has been investigated looking under the stated
settings.

We also investigate 􏽢σ2e with the values of
L � 1/2

��
T

√
,

��
T

√
, 2

��
T

√
and 􏽢σ2e that has been denoted by the

value of L in the equation Ω as well as the true value of 􏽢σ2e

Kenyan Male Mortality Evolution
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Figure 2: ln(m(x, t)) against time t of Kenyan data for males and females (a, b).
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being denoted in equation as Ω∗. Te variance values of
estimators and empirical sizes of the novel unit root test
illustrated in the lower panel are tabulated in Tables 3–6
showing the larger size than that of the nominal level and the
selection of limit L with an efect on the test. In addition, the
size becomes more precise as the value of T becomes large.

Table 3 shows the variance estimates, p values, Z values,
and test statistics for L � 1/2

��
T

√
,

��
T

√
, and 2

��
T

√
, where the

value of Ω � 􏽢σ2e .
Table 4 shows the variance estimates, p values, Z values,

and test statistics for L � 1/2
��
T

√
,

��
T

√
, and 2

��
T

√
, where the

value of Ω � 􏽢σ2e .

Table 2: Consolidated rates of mortality for ages between 20 and 60 under deep learning.

x 1 2 3 4 5 6 7 8 9 10
􏽢αx −7.225 −7.005 −6.214 −5.995 −5.835 −5.722 −5.458 −5.122 −4.828 −4.325
􏽢βx 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123

Estimates SE
􏽢θ −0.145 0.021
􏽢ϕ 0.875 0.007

Table 3: Male and female (in brackets) rates of mortality for ages between 20 and 60.

L 􏽢σ2e Test statistic P value Z

[0.5
��
T

√
] 0.072 (0.043) 0.832 (0.683) 2.819e−18(2.819e−18) 0.25

[
��
T

√
] 0.059 (0.048) 0.906 (0.712) 5.441e−15(5.116e−15) 0.50

[2
��
T

√
] 0.042 (0.035) 0.962 (0.912) 1.855e−20(1.752e−20) 0.75

Ω 0.050 (0.045) 0.997 (0.952) 1.887e−21(1.355e−21) 0.95

Table 4: Consolidated rates of mortality for ages between 20 and 60 under deep learning vs. the traditional method (in brackets).

L 􏽢σ2e Test statistic P value Z

[0.5
��
T

√
] 0.053 (0.065) 14.835 (15.752) 4.825e−4 (5.8325e−4) 0.25

[
��
T

√
] 0.066 (0.075) 12.762 (13.225) 1.133e−3(1.255e−4) 0.50

[2
��
T

√
] 0.055 (0.065) 14.822 (15.650) 3.852e−4(4.245e−4) 0.75

Ω 0.0560 (0.0625) 12.795 (13.242) 1.214e−3(1.4525e−4) 0.95

Table 5: Male and female (in brackets) rates of mortality for ages between 20 and 100.

L 􏽢σ2e Test statistic P value Z

[0.5
��
T

√
] 0.168 (0.245) 2.832 (2.774) 6.196e−15 (5.235e−15) 0.25

[
��
T

√
] 0.199 (0.258) 5.752 (5.238) 1.424e−12 (1.352e−12) 0.50

[2
��
T

√
] 0.175 (0.264) 5.245 (5.087) 1.582e−14 (1.242e−14) 0.75

Ω 0.186 (0.259) 1.985 (1.815) 5.568e−14 (5.345e−14) 0.95

Table 6: Consolidated rates of mortality for ages between 20 and 100 under deep learning vs. the traditional method (in brackets).

L 􏽢σ2e Test statistic P value Z

[0.5
��
T

√
] 0.194 (0.205) 12.882 (13.005) 4.892e−4 (5.125e−4) 0.25

[
��
T

√
] 0.259 (0.265) 11.072 (12.125) 1.481e−3 (1.945e−4) 0.50

[2
��
T

√
] 0.240 (0.255) 12.279 (12.750) 9.53 e−4(10.725e−4) 0.75

Ω 0.235 (0.253) 12.985 (13.245) 8.817e−4(9.455e−4) 0.95

Table 7: Consolidated rates of mortality for ages between 20 and 60 under the traditional method.

x 1 2 3 4 5 6 7 8 9 10
􏽢αx −8.355 −7.45 −6.45 −6.55 −5.996 −5.85 −5.80 −5.62 −5.20 −4.55
􏽢βx 0.15 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Estimates SE
􏽢θ −0.355 0.065
􏽢ϕ 0.985 0.012
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In summary, Table 3 shows the consolidated rates of
mortality for ages between 20 and 100 under deep learning,
which are lower than those of the traditional method.

Table 5 shows the variance estimates, p values, Z values,
and test statistics for L � 1/2

��
T

√
,

��
T

√
, and 2

��
T

√
, where the

value of Ω � 􏽢σ2e .
Table 6 shows the variance estimates, p values, Z values,

and test statistics for L � 1/2
��
T

√
,

��
T

√
, and 2

��
T

√
, where the

value ofΩ � 􏽢σ2e . In summary, Table 5 shows the consolidated
rates of mortality for ages between 20 and 100 under deep
learning, which are lower than those of the traditional
method.

5. Conclusions and Recommendations

Te above results have shown that using deep neural net-
work techniques to estimate parameter values improved
from the low levels of standard error (a measure of model
volatility). Also, incorporating the Bühlmann credibility
approach into the model has helped foster the model’s
accuracy.

Tis method is vital when forecasting mortality for fu-
ture dates for higher levels of precision, while the use of data
in the training of deep neural networks is essential when
modeling mortality and forecasting because the choice of
parameter estimation methods plays a vital role in showing
the model’s accuracy.

For policymakers, when modeling events of concern,
such as the death rates of a population or infectious diseases,
the choice of the parameter estimation method is critical to
the model’s accuracy. However, adequate data help improve
the “quality” of prediction/forecasting under the in-
corporated Bühlmann credibility approach since data are the
king in systematic mortality risk modeling and actuarial
valuations.
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