
 1

INTEGRATED QOS MANAGEMENT TECHNIQUE FOR INTERNET

PROTOCOL STORAGE AREA NETWORKS

JOSEPH KITHINJI

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

REQUIREMENTS FOR AWARD OF THE DEGREE OF DOCTOR OF

PHILOSOPHY IN COMPUTER SCIENCE IN THE MERU

UNIVERSITY OF SCIENCE AND TECHNOLOGY

2022

 i

ii

ACKNOWLEDGEMENT

The writing of this thesis would not have been possible without the support of

many people. Firstly, I would like to register my sincere gratitude to my

supervisors Dr. Makau S. Mutua and Dr. Gitonga D.Mwathi for their continuous

support and guidance during the whole lifetime of my PhD study. Their

perpetual energy and enthusiasm motivated me to complete this study. I could

not have imagined having better supervisors and mentors for my PhD study.

Secondly, my deepest appreciation goes to my dearest family and friends for

their never-ending support and love. They are my true motivation in achieving

all my dreams. Lastly thanks to School of Computing and Informatics, Meru

University of science and technology for giving me the opportunity to further

my doctorate.

iii

DEDICATION

To all my loved ones.

iv

TABLE OF CONTENTS

DECLARATION AND CERTIFICATION Error! Bookmark not defined.

ACKNOWLEDGEMENT ... ii

DEDICATION... iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

DEFINATION OF TERMS ... xiii

LIST OF ACRONYMS .. xiv

ABSTRACT .. xvii

CHAPTER ONE: INTRODUCTION .. 1

1.0 Overview of the Chapter .. 1

1.1 Background to the Study .. 1

1.2 Problem Statement ... 6

1.3 Objectives of the Study .. 7

1.3.1 Main Objective of the Study .. 7

1.3.2 Specific Objectives of the Study .. 7

1.4 Research Questions .. 8

1.5 Significance.. 8

1.6 Scope………………………………………………………………………8

1.7 Thesis Organization ... 9

CHAPTER TWO: LITERATURE REVIEW ... 11

2.0 Overview of the Chapter .. 11

2.1 Evolution of Storage Systems .. 11

2.2 Directly Attached Storage (DAS) .. 13

2.2.1 Small Computer System Interface (SCSI) 15

2.2.2 Parallel Advanced Technology Attachment (PATA) 15

2.2.3 Serial Attached Technology Attachment (SATA) 16

2.2.4 Serial Attached SCSI (SAS) .. 16

2.2.5 Flash ... 17

2.3 Network Attached Storage (NAS) ... 17

v

2.4 Storage Area Network (SAN) .. 19

2.4.1 Fibre Channel (FC) .. 20

2.4.2 Internet Small Computer System Interface 21

2.4.3 ATA over Ethernet (AOE) ... 21

2.5 Storage Area Network Building Blocks .. 22

2.5.1 Host Layer .. 22

2.5.2 Fabric Layer ... 23

2.5.3 The Storage Layer .. 25

2.6 Classification of Storage Arrays .. 27

2.7 Storage Area IP Networking .. 28

2.7.1 Fibre Channel over Internet Protocol (FCIP)............................... 29

2.7.2 Internet Fiber Channel Protocol ... 29

2.7.3 Internet Small Computer System Interface 31

2.7.4 The ISCSI Structure ... 32

2.7.5 Internet Small Computer System Interface Protocol Stack 33

2.7.6 Internet Small Computer System Interface Naming 34

2.7.7 Internet Small Computer System Interface Host Connectivity 35

2.7.8 Internet Small Computer System Interface Discovery 36

2.7.9 Internet Small Computer System Interface Session..................... 36

2.7.10 ISCSI Session Logout and Shutdown .. 39

2.7.11 ISCSI Protocol Data Unit... 40

2.7.12 ISCSI Read and Write Operations ... 41

2.8 Topologies for iSCSI Connectivity .. 42

2.8.1 Native ISCSI Connectivity .. 43

2.8.2 Bridged ISCSI Connectivity .. 44

2.9 Introduction to Quality of Service ... 44

2.10 Levels of Quality of Service .. 45

2.10.1 Best effort QOS.. 45

2.10.2 Differentiated Service .. 45

2.10.3 Guaranteed Service .. 45

2.11 Quality of Service Functions ... 46

2.11.1 Packet Classification and Marking .. 46

2.11.2 Traffic Rate Management .. 47

vi

2.11.3 Resource Allocation ... 48

2.12 Quality of Service Metrics ... 49

2.12.1 Packet Loss .. 49

2.12.2 Latency ... 51

2.12.3 Jitter.. 53

2.12.4 Throughput ... 54

2.13 Quality of Service Architectures .. 55

2.13.1 Integrated Services (IntServe) Architecture 55

2.13.2 Differentiated Services (DiffServ) Architecture 56

2.13.3 Multi-Protocol Label Switching .. 57

2.14 Techniques for Providing QOS in Internet Protocol Networks 57

2.14.1 First in First out Queuing (FIFO) .. 57

2.14.2 Priority Queuing... 59

2.14.3 Class Based Queuing ... 61

2.14.4 Fair Queuing and Weighted Fair Queuing 62

2.14.5 Class Based Weighted Fair Queuing ... 64

2.14.6 Custom Queuing (CQ) ... 65

2.14.7 Modified Weighted Round Robin and Deficit Weighted Round

Robin ... 66

2.14.8 Hybrid Waiting Queues ... 68

2.14.9 Custom Class Based Weighted Fair Queuing and Priority Class

Based Weighted Fair Queuing .. 68

2.14.10 Weighted Fair Queuing and Class Based Weighted Fair

Queuing ... 69

2.15 Admission Control for QOS .. 70

2.15.1 Measurement Based Admission Control 71

2.15.2 Parameter Based Admission Control ... 72

2.16 Admission Control Algorithms .. 73

2.16.1 Simple Sum .. 73

2.16.2 Measured Sum ... 73

2.16.3 Acceptance Region .. 74

2.16.4 Equivalent Bandwidth Algorithm .. 74

2.16.5 End Point Admission Control .. 74

2.17 Congestion Avoidance Mechanisms for QOS ... 75

vii

2.17.1 Random Early Detection (RED) .. 75

2.17.2 Weighted RED ... 76

2.18 Packet Classification .. 77

2.18.1 Port-Based Approach ... 77

2.18.2 Deep Packet Inspection .. 78

2.18.3 Statistical Signature Based Classification 79

2.18.4 IP Address Based Classification .. 79

2.19 QOS for Storage Area Networks ... 80

2.19.1 Stonehenge ... 80

2.19.2 PClock .. 81

2.19.3 Argon ... 83

2.19.4 Facade .. 84

2.19.5 Proportional Allocation of Resources for Distributed Storage

Access (PARDA) .. 87

2.20 QOS Optimization Theories .. 90

2.21 Performance Isolation .. 93

2.21.1 The Flower Classifier ... 94

2.21.2 Berkeley Packet Filter .. 96

2.21.3 Iptables Packet Filtering .. 97

2.21.4 RSVP & RSVP6 classifiers ... 100

2.21.5 Traffic Control Index Classifier ... 100

2.21.6 Routing Table Based Classifier ... 101

2.21.7 U32 Classifier .. 101

2.22 Limitations of Linear Search Based Classifiers 103

2.22.1 Shadowed Rule Limitation .. 104

2.22.2 Swapping Position between Rules Limitation 105

2.22.3 Redundant Rules Limitation .. 105

2.22.4 Bigger Rule Problem.. 105

2.22.5 Sequential Computation Limitation ... 106

2.23 Performance Isolation Optimization .. 106

2.24 Bandwidth Management for QOS ... 110

2.25 Layer One and Two Bandwidth Management 112

2.26 Layer Three Bandwidth Management ... 112

viii

2.26.1 Upgrading Cables and Ethernet Hubs 113

2.26.2 Network Segmentation and Full Duplex Ethernet 113

2.26.3 Bandwidth Allocation, Sharing and Reservation 114

2.26.4 Load Shedding and Buffer Allocation 115

2.26.5 Flow Control Using Choke Packets and VLANs 116

2.27 Layer Four Bandwidth Management ... 117

2.28 Layer Five Bandwidth Management (Application layer) 118

2.29 Dynamic Bandwidth Management Algorithms 119

2.30 Burst Handling for QOS .. 124

2.30.1 Leaky-Bucket Traffic Shaping ... 125

2.30.2 Token Bucket Algorithm ... 127

2.30.3 Combining Token Bucket and Leaky Bucket 128

2.31 Optimization of Bandwidth Management and Burst Handling 128

2.32 Integration of QOS Technique ... 132

2.32.1 IQMIS ... 135

2.33 IP Networks Validation.. 137

CHAPTER THREE: METHODOLOGY ... 141

3.0 Overview of the Chapter .. 141

3.1 Research Philosophy .. 141

3.2 Research Design... 142

3.2.1 Research Strategy... 142

3.2.2 Data Collection and Analysis... 143

3.3 Experimental Setup .. 145

3.3.1 Traffic Generation .. 146

3.3.2 Optimization of Performance Isolation 147

3.3.3 Optimization of Bandwidth Management and Burst Handling . 148

3.3.4 Integration of Performance Isolation, Bandwidth Management

and Traffic Shaping... 149

3.3.5 Validation of the IQMIS .. 150

3.4 Quality Control .. 150

3.4.1 Validity .. 151

3.4.2 Reliability ... 152

3.5 Review of Objectives ... 152

ix

3.6 Ethical Considerations ... 154

3.7 Summary .. 154

CHAPTER FOUR: PERFORMANCE ISOLATION

OPTIMIZATION ... 155

4.1 Chapter Overview ... 155

4.2 Problem Definition... 155

4.3 Proposed Solution .. 156

4.3.1 Packets Feature Extraction and Selection 158

4.3.2 User Classes and Operational Metrics 159

4.4 Performance Isolation Optimization Techniques 164

4.4.1 Rules Priority Estimation and Sorting 164

4.4.2 Partitioning the Rule List ... 167

4.4.3 Linear Tree Rule Structure Design... 171

4.4.4 Time Complexity Analysis... 175

4.4.5 Performance Evaluation ... 176

4.4.6 Throughput. .. 177

4.4.7 Latency ... 180

4.5 Classifier Accuracy .. 182

4.6 Summary .. 184

CHAPTER FIVE: OPTIMIZATION OF BANDWIDTH

MANAGEMENT AND BURST HANDLING .. 185

5.1 Chapter Overview .. 185

5.2 Problem Definition... 185

5.3 Proposed Solution .. 191

5.4 Bandwidth Management Optimization .. 197

5.4.1 Bandwidth Allocation .. 198

5.4.2 Bandwidth Borrowing .. 200

5.5 Handling Bursts ... 203

5.6 Summary .. 206

CHAPTER SIX: INTEGRATION OF QOS TECHNIQUES AND

VALIDATION.. 208

6.1 Chapter Overview .. 208

6.2 Integrated QOS Management Technique... 208

6.2.1 Priority Estimation Module .. 209

x

6.2.2 Performance Isolation Module ... 210

6.2.3 Burst Handling Module .. 211

6.2.4 Bandwidth Manager ... 211

6.3 Validation of IQMIS .. 213

6.3.1 Validation Metrics .. 214

6.3.2 User QOS Mapping .. 214

6.3.3 Validation Setup ... 215

6.4 Validation Results ... 215

6.4.1 Throughput versus IO Size ... 216

6.4.2 Latency and IO size .. 221

6.4.3 Jitter and IO size ... 226

6.5 Summary .. 229

CHAPTER SEVEN: CONCLUSION, RECOMMENDATIONS AND

FUTURE WORK ... 230

7.0 Chapter Overview .. 230

7.1 Conclusions .. 230

7.2 Future Work ... 233

7.3 Publications .. 233

7.3.1 First Original Research Article Publication Titled 233

7.3.1 Second Original Research Article Publication Titled 234

REFERENCES ... 235

Appendix A: Research Permit .. 263

Appendix B: Wireshark Packets Capture ... 264

Appendix C: Parkdale Output Screen ... 265

Appendix D: First Publication .. 266

Appendix D: Second Publication .. 268

xi

LIST OF TABLES

Table 2.1:Quality standards TiPhone TR 101 329 for Packet Loss 51

Table 2.2: Quality Standards ITU-T G.114 for Delay 53

Table 2.3: Quality Standards ITU-T G.114 for Jitter....................................... 54

Table 2.4: Quality Standards ITU-T G.114 for Throughput 54

Table 2.5: Comparison of Storage Specific QOS Solutions 90

Table 2.6: Example of a Sequential Rule List Policy 104

Table 3.1: Hardware and Software specifications to be used for the

Experiment ... 146

Table 3.2: Summary of Objectives .. 153

Table 4.1: Packet Features Used for Classification 159

Table 4.2: Estimated Operational Resource Per User 160

Table 4.3: SLO for Classes of Storage Users .. 162

Table 4.4: Sample Classifier Policy with 325 Rules...................................... 163

Table 4.5: Partitioned Rule List ... 170

Table 4.6: Statistics of Packet Classification ... 183

Table 6.1 Total Number of Packets Generated .. 216

Table 6.2: Scenario 1 with IO size of 4KB .. 218

Table 6.3: Scenario 2 with IO size of 64KB .. 219

Table 6.4: Scenario 3 with IO size of 1MB ... 220

Table 6.5: Scenario 1 with IO size of 4KB .. 223

Table 6.6: Scenario 2 with IO size of 64KB .. 224

Table 6.7: Scenario 3 with IO size of 1MB ... 224

Table 6.8: Average Jitter in Milliseconds .. 226

xii

LIST OF FIGURES

Figure 2.1: SAN Building Blocks .. 22

Figure 2.2: IP SAN Based on ISCSI .. 33

Figure 2.3: ISCSI Protocol Stack ... 34

Figure 2.4: ISCSI Session Error Handling ... 38

Figure 2.5: ISCSI PDU Encapsulation in an IP Packet 40

Figure:2.6:ISCSI Connectivity .. 43

Figure 2.7:Overview of DiffServ operation ... 56

Figure 2.8:First-In-First-Out (FIFO) queuing .. 59

Figure 2.9:Priority Queuing ... 60

Figure 2.10:Weighted Fair Queuing (WFQ) .. 64

Figure 2.11: Class-based queuing (CBQ) .. 65

Figure 2.12: Facade Structure .. 85

Figure 2.13: The Flower Classifier Operation ... 95

Figure 2.14: BPF usage overview .. 97

Figure 2.15: Functioning of HTB .. 123

Figure 2.16:Bursty traffic handling for QOS .. 125

Figure 2.17:Leaky Bucket Algorithm .. 126

Figure 2.18:Token Bucket Algorithm .. 127

Figure 2.19: IQMIS Architecture ... 137

Figure 3.1: Experimental Setup ... 145

Figure.4.1: ELPCIS Methodology ... 157

Figure 4.2: Rule Hits Distribution over Varied Block Sizes 165

Figure 4.3: Linear Tree Rule Structure Building ... 172

Figure 4.4: Sequential Tree Rule Structure Based on Table 4.5 173

Figure 4.5 Writes throughput comparison ... 177

Figure 4.6 Reads throughput comparison .. 178

Figure 4.7 Latency comparison for writes ... 180

Figure 4.8 Latency comparison for writes ... 181

Figure 5.1: Architecture of the HPDDRR.. 194

Figure 5.2 Bandwidth Allocation ... 198

Figure 5.3: Bandwidth Borrowing ... 201

Figure 5.4:Burst handling .. 204

Figure 6.1: IQMIS Architecture. .. 209

Figure 6.2: Throughput for 200 seconds .. 217

Figure 6.3: Latency for 200 seconds .. 222

Figure 6.4: Jitter for 200 seconds ... 227

xiii

DEFINATION OF TERMS

Bandwidth: Capacity of a network measured in bits per second.

Burst handling: Process of regulating traffic to a certain rate.

Optimization: Designing an algorithm to work in the most effective way

Packet classification: Process of associating packets to classes.

Performance isolation: Process of segregating traffic using reservations and

limits to avoid interferences between classes of users.

Linear search: Sequential search from the top of a list until a match is found.

Quality of service: Management of data transmission capabilities of a network

in order to offer prioritization.

xiv

LIST OF ACRONYMS

AOE Advanced Technology Attachment (ATA) Over Ethernet

ATAPI Attachment Packet Interface

BIOS Basic Input Output System

BPF Berkeley Packet Filter

CID Connection Identity

CIFS Common Internet File System

CPU Central Processing Unit

CQ Custom Queuing

DAS Direct Attached Storage

DRR Deficit Round Robin

DSCP Differentiated Service Code Point

DWRR Deficit Weighted Round Robin

EDF Earliest Deadline First

ELPCIS Enhanced List Based Packet classifier for Internet Protocol

 Storage Area Networks

FC Fibre Channel

FC SAN Fibre channel Storage Area Network

FCIP Fibre Channel Internet Protocol

FLOGI Fabric Login

GBIC Gigabit Interface Converter

HBA Host Bus Adapter

HDD Hard Disk Drive

HPDDRR Hierarchical Priority Dynamic Deficit Round Robin

HTB Hierarchical Token Bucket

IBM International Business Machines

IDE Integrated Drive Electronics

IEEE Internet Electrical Engineering

IETF Internet Engineering Task Force

IFCIP Internet Fibre Channel Internet protocol

xv

IP Internet Protocol

IP SAN Internet Protocol Storage Area Network

IQMIS integrated Quality of Service Management Technique for

 Internet Protocol Storage Area Networks

ISCSI Internet Small Computer System Interface

ISID Initiator Identity

LAN Local Area Network

LER Label Edge Router

LUN Logical Unit Number

MAC Media Access Control

MDRR Modified Deficit Round Robin

MPLS Multiprotocol Label Switching

NAS Network Attached Storage

NFS Network File System

NIC Network Interface Card

OSD Object Storage Devices

P2P Peer to Peer

PARDA Proportional Allocation of Resources for Distributed Storage

 Access

PATA Parallel Advanced Technology Attachment

PCQ Per Connection Queue

PDU Protocol Data Unit

PFIFO Priority First in First Out

PRIO Priority Qdisc

QFULL Queue Full

QOS Quality of Service

RAID Redundant Array of Independent Disks

RPC Remote Procedure Call

RSVP Resource Reservation Protocol

SAN Storage Area Network

xvi

SAS Serial Attached Small Computer System Interface

SATA Serial Attached Technology Attachment

SLED Service Level Enforcement Discipline for Storage

TBF Token Bucket Filter

TC Traffic Control

TOE TCP/IP Offload Engine

TSID Target Identity

U32 Universal 32 Bit

VBR Variable Bit Rate

VLAN Virtual Local Area Network

WRED Weighted Random Early Detection

YFQ Yet Another Fair Queuing

xvii

ABSTRACT

The increasing number of Information technology Users around the world has

led to tremendous increase in the amount of data that requires storage. In

response to this challenge, new storage area network architectures based on

Ethernet (IP) have evolved. With the coexistence of storage traffic with other

types of traffic in the same IP network, it is important to offer storage traffic

QOS guarantees to prevent performance degradation for storage users.

Regrettably, the storage device itself does not provide any capability of

guaranteeing storage QOS. QOS is a vital issue in environment of mixed works

like IP SANS. The main aim of the study was to analyses the QOS techniques

used in IP networks, design, develop and validate an Integrated QOS

management technique for IP SANs. The study first analyzed the various

techniques for achieving QOS in IP Networks. By decomposing QOS problem

into an integration of four techniques of performance isolation, bandwidth

management and burst handling the study designed and developed IQMIS, an

integrated quality of service management technique for IP SANS. The study

adopted experimental research design. Simulations were used as the source of

data where Park dale tool was used for simulating reads and writes to the targets.

The study generated quantitative results which were analyzed using descriptive

statistics and results presented in tables and charts. Empirical results show that

IQMIS enables users to fairly share the aggregate system throughput even in

environment of contention of resources with a small implementation cost of 6%.

In the implementation of bandwidth management and burst handling, IQMIS

was found to be work conserving and quickly adopts to network changes with a

convergence time of 10 seconds. Further the results show that IQMIS can

provide strong performance isolation, superior latency, throughput and jitter

compared to best effort. Ultimately IQMIS can be used to provide end to end

QOS management in IPSANS and at the same time provide building blocks for

providing QOS in IPSANS.to tremendous increase in the amount of data that

requires storage.

 1

CHAPTER ONE: INTRODUCTION

1.0 Overview of the Chapter

This chapter presents the introduction to the work presented herein. It provides

the crucial background to the study, statement of the problem, research

objectives, and the research questions. Further, the chapter outlines the

significance of the study, its scope and finally the overall organization of the

thesis.

1.1 Background to the Study

The growing number of Information and Communication Technology (ICT)

users all around the world has led to a steady growth in the volume of data that

needs storage. A modern approach is the use of the Cloud Computing

technology which largely employs the use of Storage Area Networks (SAN). A

SAN can be defined as a dedicated high‐speed network of storage devices and

switches connected to computer systems. A SAN provides a common pool of

storage to multiple servers where each server is able to connect to the storage

devices as if they were directly connected to it(Fang et al., 2019). In addition to

providing a way of managing storage in a centralized place, SANs also provide

a way of sharing data, backing up and restoring data and moving data between

storage devices(Ghazal, Ben, & Claudé, 2012). This is in contrast with the

conventional storage area networks that includes the technologies of Small

Computer Systems Interface(SCSI) and Fibre Channel(FC) but yet are not able

to meet the requirement to increase capacity as well as reduce capital and

operational expenditures(Azadegan & Beheshti, 2014).

2

However, (SCSI) and (FC) are among most prevalent technologies used in

SANs. Although these implementations are widely used, they come with a

number of challenges. First the SCSI and (FC) implementations use customized

network components and therefore are not able to take advantage of the readily

available and low cost technologies used in IP-based networks. In addition they

involve dedicated equipment that leads to the creation of data centers and

storage systems using dissimilar interconnects(Nunome, 2014). Consequently,

this creates a necessity to explore alternative solutions that use the IP

technology to ease the cost as well as take advantage of fast developments in IP

based networking equipment’s(Shimano, 2019). In response to these challenges

of SCSI and FC SANs, architectures based on Ethernet have been developed

such as the fiber channel over IP protocol (FCIP) and the Internet Small

Computer System Interface (ISCSI)

With fiber channel being one of the most popular technology used in SANs

because of its high performance there has been efforts to extend it beyond the

local area network. However it is inhibited in terms of reach as it uses a flow

control algorithm which needs to acknowledge every single transmission(Wang

et al., 2015). To increase the coverage of FC SANs past the LAN thus, FCIP or

internet fiber channel protocol (IFCP) is used to interconnect FC networks over

IP networks. However, these technologies utilize specialized hardware for the

transfer of FC traffic over a wide area network which results in extra complexity

as well as susceptibility to security vulnerability associated with IP network

(Yahya-imam, 2014).

3

The ISCSI is an architecture standard standardized by the Internet Engineering

Task Force(IETF) which is designed to transport SCSI application data over

Transmission Control/Internet Protocol(TCP/IP) networks (Gauger, 2005).

ISCSI has the advantage of putting together messaging network and storage

networks into a single communication network at the same time deliver

improved scalability of IP networks. This means that storage networking is

converging to familiar TCP/IP environment (Paulraj & Kannigadevi, 2019).

ISCSI enables the creation of IP SANs (Internet Protocol Storage Area

Network). IP SAN is a storage area network that utilizes the IP technology. The

ISCSI protocol makes it conceivable for TCP/IP networks to link hosts to their

associated storage devices in the SAN (Paulraj & Kannigadevi, 2019). These

combination of messaging and storage traffic in IP SANs brings about

contention for network resources between messaging traffic and storage traffic

which if not managed would lead to degradation of quality of service (QOS) of

IP SANs.

In a SAN, QOS guarantee is necessary for ensuring performance guarantees for

clients using it (Salmani, 2015). QOS is the control and management the

resources in a network by allocating resources based on priority to a group of

users in the network. Time sensitive users are given higher priority than those

perceived to be less time sensitive. (Mary & Jayapriya, 2019). Primarily, QOS

makes it possible to provide differentiated service to flows in network. This is

done by assigning priority to flows based on their importance (Shimano, 2015).

However, over the recent years, storage network technology has evolved with

the focus being that of improving the client quality of service as well as

4

providing reliability in storage area networks. Moreover users need fast and

reliable access to information stored SANs (Jiang, 2019). Although SANs are

able to present to the client a virtualized amount of storage, the storage devices

do not have QOS features. In addition the storage service agreements included

in the storage are not able to provide predictability of service delivery (Bigang,

Jiwu, & Weimin, 2006). Due to the sharing of a single storage pool by many

users, a single user may flood the network with requests causing performance

degradation to other users on the network (Ramaswamy, 2008). Therefore the

performance of a given user accessing a storage network is erratic due to the

sharing of network resources(Fang et al., 2019). For example in an enterprise

network, web hosting, data analysis and data editing may be running at the same

time(Mary & Jayapriya, 2019).

To address the problem of service unpredictability in storage area networks , a

mechanism of providing QOS based on some policy is required (Mahajan &

Mahajan, 2015). QOS is essential in the mixed environment where various users

with different levels of priorities and preferences are accessing the storage

systems simultaneously (Salmani, 2015). As a result, the need to implement

predictable performance in IP SANs led to research which resulted in the

development of various approaches including but not limited to Proportional

Allocation of Resources for Distributed Storage Access (PARDA), Façade and

Stonehenge.

Developed by (Gulati & Waldspurger, 2007), PARDA uses latency

measurements to make adjustments to queue lengths to ensure fairness in the

5

allocation of network resources. However PARDA algorithm has to run on

every storage device which introduces overhead. In a further attempt, (Lumb,

Merchant, & Alvarez, 2003) developed the façade tool which provides

performance guarantees through performance isolation (Nam, Ryu, Park, &

Ahn, 2004). Though, Façade was found to be able to utilize resources more

efficiently and balance load among the storage devices, its performance was

found to degrade with increasing workloads. In addition, Facade also requires

to run in multiple storage devices which causes overhead in an attempt to

synchronize the independent algorithms.

All the mentioned techniques require that multiple instances of the same

algorithm runs on every storage device which increases overhead which is

caused by the processing of the individual algorithms(Shimano, 2015).

Furthermore, these techniques are implemented on the storage device and

therefore do not provide service guarantees when storage traffic is traversing

the network which is important in IP SAN storage (Mary & Jayapriya, 2019).

This study therefore developed an integrated approach for providing quality of

service in IP-SANS using ISCSI since it’s mechanisms for enforcing fairness

amongst storage consumers are well tested (Billaud & Gulati, 2017) and are

increasingly being used for QOS research. Similarly, integration of the well-

known TCP/IP throttling mechanisms and storage systems internals provided a

good method for solving the issue of QOS in storage area networks. Since ISCSI

uses TCP for data transfer(Mary & Jayapriya, 2019), the use of TCP/IP as

transport mechanisms call for use of traffic shaping (Mary & Jayapriya, 2019)

6

which were integrated in the proposed model. Experimental results clearly

indicates that the proposed technique can provide high level QOS management

of bandwidth, provide scalable performance isolation and high levels of burst

handling in IP-SANs.

1.2 Problem Statement

The concept of creating SANS with IP networking is compelling due to savings

gains in terms of management and reduction in cost of deployment. This has

been largely supported by the increasing popularity of the Internet Small

Computer System Interface (ISCSI) protocol that enables storage read and write

commands to be run over the Internet Protocol (IP) network. Regrettably, the IP

protocol and the storage device itself do not provide any capability of

guaranteeing Quality of Service (QOS) (Salmani, 2015) leading to the need for

techniques to address this open problem.

Whereas a number of techniques such as PARDA(Gulati & Waldspurger,

2009), Argon(Wachs et al., 2007),Façade (Lumb et al., 2003) and EdgeIso(

Nam, Choi, Yoo, Eom, & Son, 2020), PTrans(Peng & Varman, 2020),

pShift(Peng, Liu, & Varman, 2019) have been proposed, these techniques

focused on implementing QOS specifically in the storage device itself and

assuming that the SAN has no QOS issue. The absence of network QOS in

SANs creates an avenue for uncontrolled contention for network resources by

storage users and if not addressed would eventually lead poor user performance

isolation, poor burst handling and unfair bandwidth management which may

lead to throttling of storage priority services.

7

User performance isolation is an important feature for minimizing disruptions

that might be caused by busty flows. Without user performance isolation a

greedy user may send huge volumes of data denying services to other users that

happen to share the same network. On the other hand bandwidth management

as realized by best effort include static allocations for bandwidth which are

exceedingly conservative and cannot adopt to network changes achieving poor

bandwidth utilization.

An ideal QOS mechanism needs have the following qualities. Firstly meet

throughput and latency requirements for well behaving flows without

interference from ill behaving flows that is user performance isolation.

Secondly allocate bandwidth to users based on the current need. Thirdly use the

spare capacity to handle bursty traffic without penalizing user’s latency and

throughput requirements.

 1.3 Objectives of the Study

1.3.1 Main Objective of the Study

The main objective of the study was to analyze the QOS techniques used in IP

networks, design, develop and validate an Integrated QOS management

technique for IP SANs.

1.3.2 Specific Objectives of the Study

i. To analyze techniques of providing QOS in IP networks.

ii. To optimize techniques for performance isolation, bandwidth

management and burst handling for QOS in IP SANS.

iii. To develop an integrated QOS management technique for IP-SANs.

8

iv. To validate the integrated technique for providing QOS management in

IP-SANs.

1.4 Research Questions

i. What techniques are used to provide QOS in IP networks?

ii. How can an optimization design of the QOS techniques of

performance isolation, bandwidth management and burst handling be

achieved for providing QOS management in IP SANs?

iii. How can an integrated QOS management be developed in IP SANs

using performance isolation, bandwidth management and burst

handling?

iv. Is the developed technique valid for managing QOS in IP SANs?

1.5 Significance

By using the concepts and findings from this research, network administrators

can provide differentiated QOS storage clients with a guarantee earlier not easy

to realize. Again the integration of the well-known TCP/IP throttling

mechanisms provides researchers a good approach to solving the issue of QOS

in IP storage systems, instead of creating new algorithms which are bound to

cause uncertainty and overhead. Moreover the outcome of this research acts as

a catalyst for further research about QOS in IP SANs.

1.6 Scope

This study was delimited to the provisioning of QOS to storage traffic generated by

users in an IP SAN. This was based on the assumption that any other traffic does

not have QOS issues in the SAN. The classes of users studied include the task,

9

knowledge and power users. The study was also delimited to the QOS techniques

for implementing performance isolation, bandwidth management and burst

handling.

1.7 Thesis Organization

In the following sections, the thesis provides a summary of what is contained in

the rest of the chapters of this thesis:

Chapter Two. Literature review: In this chapter the thesis provide a review of

the existing literature in storage area networks and QOS. The chapter further

presents the framework of the proposed solution that is used in the rest of the

thesis.

Chapter Three. Methodology: This chapter presents the methods and tools

used in achieving the objectives of the thesis. It also includes the metrics to be

used for measuring the performance of the proposed system together with the

methods of data analysis.

Chapter Four. Performance isolation optimization: In this chapter the thesis

analyzes the classification of packets for performance isolation. Performance

isolation is achieved through classifying packets and binding resources to the

packets to prevent interference between classes of packets. The thesis

hypothesized that the classification for packets if not optimized would lead to

performance degradation when implementing performance isolation. To

investigate this the thesis derived a set of classification rules and analyzed the

cost of classification using linear search while varying the number of rules.

Chapter Five. Optimization of bandwidth management and burst handling:

This chapter embarked on the optimization of dynamic bandwidth management

10

which is achieved through HTB. HTB uses DRR as a scheduler which incurs a

lot of delays due to the use of FIFO queues. In addition DRR suffers from head

of line queues where big packets delay smaller packets. Therefore to optimize

bandwidth management the thesis implemented HPDDRR which is a scheduler

shaper that uses hierarchy of queues arranged according to priority to ensure

high priority queues are not mixed with low priority queues and are served first.

The optimization further uses a dynamic quantum which is generated based on

priority and network statistics to ensure more packets are sent per round in

contrast to the conventional DRR where the quantum is static.

Chapter Six. Integration and validation of performance isolation, bandwidth

management and burst handling: In the review of literature in chapter two the

thesis found that there is need of integration of QOS techniques to achieve the

benefits of all the techniques. Therefore this chapter integrated the techniques

of performance isolation, bandwidth management and burst handling. The

performance of the integrated technique was evaluated using QOS metrics of

throughput, latency and jitter.

Chapter Seven. Conclusion, recommendations and publications: This chapter

presents the conclusion on contributions and findings, and presents

recommendations for future work. It further presents the publications.

11

CHAPTER TWO: LITERATURE REVIEW

2.0 Overview of the Chapter

This chapter discusses in detail the literature that was used in this study. The

chapter begins by presenting a brief evolution of storage systems over the years

up to the inception of IP SANs. It further reviews the various IP SANS QOS

techniques available and the efforts done over the years to implement them.

Similarly, existing gaps are identified which the study aims to fill with the

proposed solution. Finally, the proposed solution is briefly introduced as a

method that presents promising empirical results in the subsequent chapters.

2.1 Evolution of Storage Systems

Storage systems are built by incorporating layers of hardware and software to

provide reliability, manageability and high performance. IBM is credited to

have created the first storage device in 1956 and from this invention storage

systems have evolved to include new services as well as different forms of

interconnection(Wu, Wang, Hua, Member, & Feng, 2017). However, the initial

storage devices were attached to the central processing unit (CPU) thus limiting

total amount of data that could be held at any given time. Consequently, to

address this challenge, in 1964 IBM developed external hard disks which would

be managed independent of the CPU(Jaichandra & Prasannakumar, 2015).

Nevertheless, over time it was established that single disk drives may not

provide the variety of storage capabilities required by modern enterprise

systems.

12

In the 1980s the development of low cost LAN technology lead to a major trend

in storage systems. This is because as computers became networked the client

server model for computing also emerged. To achieve data sharing storage

servers also emerged. This development led to the emergence of network

attached storage(NAS) which provided network storage sharing capability

through protocols such as NFS (Network File System), HTTP(Hypertext

transfer protocol),FTP (File Transfer Protocol) and CIFS (Common Internet

File System)(Vishvanath & Nasreen, 2014).

In the 1990s storage systems evolved further with the introduction of the

redundant array of independent disks (RAID). It provided performance as well

as high availability that could not be achieved in a single drive by means of

parity that would be used to restore lost data(Romli, 2019). However, as time

went by, disaster recovery became crucial for all IT systems and this further

drove the evolution for the design of storage systems. In this case techniques

such as point in time copy and mirroring were developed (Puters, 2012) which

involved the creation of a virtual copy which could later be used to create a real

copy in case of failure. Additionally, mirroring also known as continuous copy

is a technique in which a duplicate copy is continuously made at a local site

which is primary at a secondary site for recovery of data (Kozhedub & Air,

2018).

At the same time the IT companies were trying to regain control of the

decentralized nature of storage brought about by the NAS leading to the creation

of data centers. The main aim was to have access to storage without necessarily

13

having that storage directly attached to a server hence the emergence of storage

area networks (SANs). SANs provide the advantage of managing storage

separate from the server and having the storage independent of the server

hardware and software (Wang, Gilligan, Green, & Raubitschek, 2003). This

decoupling of storage from the server brought about advantages of connectivity,

scalability and cost. The fiber channel became the technology of choice for the

interconnection of storage to servers, however the fiber technology is expensive

(Noertjahyana et al., 2020).

The increased speeds in Ethernet LANS using TCP/IP led to an interest in

Ethernet SANS in an attempt to reduce implementation costs as well as

management costs since network managers need to be familiar with only one

type of technology (Chiu, Singh, Wang, Lee, & Park, 2017). The ISCSI was

introduced to facilitate the transmission of SCSI commands over the TCP/IP

network. However in order to have all benefits of TCP/IP SANs, issues of

performance and security need to be addressed (Mistry, Prajapati, Patel, &

Saxena, 2020). The following sections looks at storage models including NAS,

DAS and SANs.

2.2 Directly Attached Storage (DAS)

Direct attached storage (DAS) comprises of a computer or a server which is

directly attached to a hard disk drive or an array of drives. Buses such as SCSI,

Fibre channel, Advanced Technology Attachment (ATA) and serial

ATA(SATA) are used to connect the computer to the storage device (Wu et al.,

2017). DAS is a popular storage model in most enterprise networks due to its

14

low cost and simplicity. DAS is the most suitable solution for attaching storage

to computers and servers. However it is not suitable for backup availability and

performance requirements. Beside the mentioned downside, DAS is still a

popular choice for small enterprise as some of the issues such as those of

reliability and performance can be addressed using advancement in Hard-Disk

Drive (HDD) and bus technologies. The introduction of standards such as FC

BUS, SATA-2, ULTRA SATA and Serial Attached SCSI (SAS) has reduced

some of the performance disadvantages of the bus interface. In addition the

HDD technology has improved over the years which has addressed some of the

requirements of storage users(Vishvanath & Nasreen, 2014).

The DAS ties the storage resources to a given server which becomes a limitation

when client applications demand higher requirements on the access of storage

data. The number of HDD a certain DAS can support is limited by the bus of

the server. In addition in a case of maintenance the server has to be put offline

for a period of the maintenance(Preethi, 2017). The high distribution of storage

means that data is highly replicated and a free storage in one computer cannot

be accessed by another computer(Romli, 2019).

The availability of information stored in storage devices is not always

guaranteed since if a server attached to a storage device fails the storage

becomes inaccessible. The use of parallel processing for improved performance

is not possible in DAS since sharing of workload among servers is not possible.

Performance of a DAS is also limited by the processing capability of the

server(Noertjahyana et al., 2020).

15

The cost of maintenance of a DAS is increased by the fact that for a simple

backup all the servers must be backed up in addition any repairs to be done are

done on all the servers making the job tedious and time consuming(Wu et al.,

2017).The DAS uses one or a combination of protocols. These include; Small

Computer System Interface (SCSI), Parallel Advanced Technology

Attachment(PATA), Serial Attached Technology Attachment (SATA), Serial

Attached SCSI (SAS), Fibre Channel and FLASH. These protocols are

discussed in the following sections.

2.2.1 Small Computer System Interface (SCSI)

Small computer system interface is an interface used for servers and work

stations. However, over the recent years, it has significantly lost its market but

is still sparingly used in some modern servers with the evolution from SCSI-1

to ULTRA-640 SCSI. Most of the latest versions of SCSI can handle more than

fifteen hard drives (Vishvanath & Nasreen, 2014).

2.2.2 Parallel Advanced Technology Attachment (PATA)

Parallel advanced technology attachment (PATA) was originally known as

ATA (Advanced Technology Attachment (ATA) Over Ethernet), IDE

(Integrated Drive Electronics) or ATAPI had been the predominant computer

storage interface until it has been overtaken by SATA (Serial Attached

Technology Attachment). PATA storage drives are still in use today especially

for external disk drive boxes (Romli, 2019). Like others PATA has also gone

through numerous revisions. PATA supports a master/slave configuration

16

however sharing of the same port is not recommended if performance is vital

(Kozhedub & Air, 2018).

2.2.3 Serial Attached Technology Attachment (SATA)

Serial attached technology attachment (SATA) is the predecessor to PATA.

SATA doesn’t allow port sharing therefore does not experience performance

problems associated with PATA (Noertjahyana et al., 2020).However SATA is

more expensive than PATA which uses a very small pin connector attached to

a thin cable which reduces the space occupied thus providing sufficient airflow

for more denser installations. SATA is used in small servers and inexpensive

storage arrays (Chiu et al., 2017).

 2.2.4 Serial Attached SCSI (SAS)

Serial Attached SCSI (SAS) is one of the storage interfaces commonly used in

servers and storage devices. SAS is seen as the merging of SCSI and SATA is

due to the fact that it uses SCSI commands and is pin compatible with

SATA.SATA drives can connect to SAS but SAS devices are not able to

connect to SATA ports (Wu et al., 2017).

Another difference between SAS and SATA is that SATA cables are limited to

one meter long whereas SATA can be able to run up to eight meters long. SAS

cables are long due to the high signal voltage but when a SATA is connected

the voltage level is lowered. SAS is mainly used for storage arrays and high

performance servers however SATA is primarily used in personal

computers(Chiu et al., 2017). SAS can be linked to numerous hard drives by

means of expanders unlike SATA, however sharing a SATA experiences low

17

overhead than SCSI. Due to the fact SATA ports are faster, SAS provides

superior performance as compared to SCSI and SATA (Wu et al., 2017).

2.2.5 Flash

Flash is not exactly a storage interface however it can be packaged in a hard

drive to help reduce the latency associated with seek and rotational latency of

hard disk. Flash offers the benefits of 100 times read/write IOPS compared to

hard drives and therefore suitable when database application are used(Wu et al.,

2017). The limitation of flash memory is that it is limited in terms of writes and

rewrites and also is very expensive. When it comes to the limitation of writes

and rewrites the flash memory starts to fail when writes and rewrites to the flash

memory reach a maximum ranging between ten thousand to one million writes.

To deal with the limitation of writes and rewrites flash memory uses wear

levelling of which also has some limits(Puters, 2012).

2.3 Network Attached Storage (NAS)

Network attached storage (NAS) is a storage system where storage is accessed

by a server which acts as gateway(Vishvanath & Nasreen, 2014). The advantage

of NAS is that it offers the central management of storage as well as backup.

Other advantages of Network attached storage over Direct attached storage

(DAS) is that NAS is not affected by server downtime as in DAS. In addition

NAS offers easy way of installing devices for better performance and offers

more reliability than DAS. NAS is a way of connecting to the storage via LAN

using file systems like NFS and CIFS. The main distinction between NAS and

18

SAN include that, NAS provides file level I/O access while SAN offers block

level I/O access over the network(Chiu et al., 2017).

In a NAS data is transmitted in form of file data stream whereas in a SAN it is

transmitted in form of blocks (Vishvanath & Nasreen, 2014). The file access

model found in NAS require extra processing in the host as well as in the NAS

box. This processing results in overhead which is detrimental to processing

speed as well as an increase in data transfer overhead. Although these solutions

can be solved using Moore’s law, however I/O throughput processing latency

cannot be solved by Moore’s law. Block level access found in SANs can be

used to solve the problem of extra layer processing found in NAS(Noertjahyana

et al., 2020).

The client application generate I/O requests which are then handled by the client

operating system as system calls similar to those generated by a DAS

system(Kozhedub & Air, 2018). The difference between NAS and DAS system

calls is how they are processed by the operating system(Romli, 2019). When

the system calls are generated an I/O redirector determines the location of the

file if it is local or remote (Mistry et al., 2020). If it is included in a DAS, the

system calls are processed by the local file system, on the other hand if the file

are remote the system calls are handled by network file system which include

the NFS or CIFS. The file requests are then forwarded to the TCP/IP protocol

stack for reliable transmission across the network(Wu et al., 2017). Network

file system protocol provides a mechanism for a client host to access files over

a network. For parallel access of storage system parallel NFS (PNFS) is used as

19

a standard protocol(Chiu et al., 2017). On the other hand Common Internet File

System (CIFS) provides mechanism for the sharing of files over internet and

intranets. CIFS operates in the application layer and is mainly used for file and

printer sharing(Noertjahyana et al., 2020).

When it comes to NAS, a NAS device NIC receives the file access commands

then passes them as data grams to the TCP/IP protocol stack(Mistry et al., 2020).

The TCP/IP then unwraps the datagrams to access the NFS or CIFS message

sent by the client. Then the CIFS and NFS system calls are handled by the NFS

file system where the NFS/CIFS commands are mapped to file access system

calls from the file system of the NAS storage device(Jacob, 2017). The disk

system, the file system and the volume manager in NAS operate in similar

manner as in DAS where they translate the file I/O commands into block I/O

transfers between the disk system and disk controller. It is key to understand

that a disk system cannot be termed as one device as it is an array of devices.

Storage devices in a NAS are accessed through technologies such as HBA or

the disk controller using block level I/O(Vishvanath & Nasreen, 2014).

2.4 Storage Area Network (SAN)

A SAN offers block level input/output access for hosts to target storage systems.

In a SAN the interconnection between the target storage and host is done either

using the Ethernet ISCSI or Fibre channel(Jaichandra & Prasannakumar, 2015).

In either FC or ISCSI SAN the storage is separated from the hosts. The hosts

and storage are connected in a manner that all the devices are at the same level

with the benefits of high availability, high bandwidth and long distance

20

reach(Romli, 2019). In an ideal setup, the FC SAN and IP SAN the SAN fabric

is separated from the LAN. However in an IP SAN it is possible to have a shared

infrastructure between a SAN and LAN. Since the SAN requires very high QOS

its mixing with the LAN requires efficient techniques for QOS(Wu et al., 2017).

The SAN internal operation uses a number of protocols including Fibre channel,

Internet small computer system interface (ISCSI) and ATA over Ethernet

(AOE)(Brahneborg, Duvignau, Afzal, Mubeen, & Member, 2022).The

following sections looks ate these protocols in details.

2.4.1 Fibre Channel (FC)

FC provides a mechanism for channeling and networking technology which is

used for interconnection between computers and storage devices for high speed

data transfer (Romli, 2019). It is used as a transport for multiple protocols such

as IP and SCSI for high speed I/O and networking capability. FC incorporates

both the channeling and networking capabilities(Wu et al., 2017). A channel

provides a dedicated link for moving data from one end to another with the

smallest amount of latency(Zhang, Wang, Xiao, Xiong, & Chang, 2019). The

networking capability includes packet and circuit switching, ability to act as a

transport protocol for other protocols. In its simplest form a Fibre channel

network consists of bidirectional point to point channels(Lim & Choi, 2005).

FC is the most popular technology used to implement SAN due to a number of

reasons. First FC supports transport media technologies such as copper and

optics. Copper implementations offer low cost configurations and fiber optics

for high speed at higher cost. Secondly FC technology supports other important

21

capabilities vital for SANs that is reliability, self-configuration and fault

isolation which ensures maintenance does not affect all SAN operations(Wu et

al., 2017).

2.4.2 Internet Small Computer System Interface

Internet small computer system interface (ISCSI) is a cheaper alternative to FC

since it runs on the TCP/IP protocol and commonly used Ethernet switches. In

addition since most of the network managers are familiar with TCP/IP

technology and the Ethernet devices are shared and therefore IP SANs provide

immense cost advantages. In addition since IP SANs use TCP/IP, traffic can be

rerouted to different sub nets providing wide area network access for back up

and disaster recovery. The downside of ISCSI is that since it has to encapsulate

the SCSI protocol into TCP packets it is computationally expensive of which

this problem can be solved using modern multicore processors(Xiong, Wu,

Zhao, & Wang, 2019).

ISCSI targets are the source of the storage and can either be hardware storage

array or software running on a server. This means a server running ISCSI target

software is like a hardware target. Use of the ISCSI software target provides for

the configuration of varied types of devices as targets and also access by a

variety of initiators (clients) are the IP network. The ISCSI initiator is found in

many operating systems (Dhabake, 2016).

 2.4.3 ATA over Ethernet (AOE)

ATA over Ethernet (AOE) is created as a cheaper alternative to ISCSI. AOE

does not use TCP/IP however it encapsulates low level Ethernet

22

frames(Gaonkar, Bojewar, & Das, 2013). This makes it cheaper also in terms of

computations, however it is not routable. AOE is supported in most Linux

implementations however it requires purchase of initiator software in

windows(Malviya, 2016).

 2.5 Storage Area Network Building Blocks

 This section looks at the SAN building blocks divided into host layer, fabric

layer and storage layer. Figure 2.1 illustrates the association between SANs

building blocks.

Figure 2.1: SAN Building Blocks

2.5.1 Host Layer

The host layer consists of the servers (hosts) and devices that facilitate the host

to connect to the SAN. These components include host bus adapter (HBA), host

bus adapter drivers and gigabit interface converter (GBIC)(Riabov, 2004).

Storage Layer

Cable Cable

Cable

Fabric Layer

Cable

Host Layer

Disk storage Disk storage

Software
Application

Operating
system

HBA
driver

HBA

GBIC

Switch

Fabric
Operating

system

GBIC

Storage
array

Raid
controller

Storage
Drives

Cable

23

The host bus adapter is an intelligent device that is affixed in a slot inside the

server (Preethi, 2017). The HBA enable the server to connect to the fabric layer

as well as communicate with storage devices in the SAN. The HBA intelligence

is achieved through hardware and software. The software consists of a driver

which allows the HBA and the operating system to communicate as well as the

BIOS firmware, that is used in updating the HBA functionality in the

SAN(Vishvanath & Nasreen, 2014).

Since a SAN deals with transmission and storage of huge amounts of data, a

gigabit interface converter is required to transmit as well as receive data. Data

coming from the SAN enters the host via gigabit interface converter in the HBA.

The GBIC converts the analog signal into digital signal that the server can

understand(Romli, 2019).

2.5.2 Fabric Layer

The fabric layer includes devices such as SAN hubs, switches, routers, protocol

bridges, gateway and the cables. The fabric layer is the hardware part of the

SAN and the main task of devices found at this layer is to move data from the

initiator to the target(Biswas, 2010). The SAN hubs connect the HBAs to the

storage devices. A hub contains connection points where each device connects

to one of those points(Salmani, 2015). When using a hub each device takes turns

to transmit. This is because the hub creates a single loop wire where only one

device can transmit at the same time. Devices negotiate for the use of the loop

with other device. Hubs have the disadvantage of lower speeds compared to

switches. In addition when a device is added to a hub network it interrupts all

24

the transmitting devices since they will need to negotiate for the use of the

link(Hemke, Gawande, Gautum, & Email, 2013).

A SAN switch provides a central connection for the devices that require

connection to storage(Jaichandra & Prasannakumar, 2015). A switch allows for

the connection of devices in a point to point manner and all devices can

communicate at the same time. A single switch could be used to link devices in

a SAN however it is recommended to use more than one switch to avoid creating

a single point of failure(Salmani, 2015). A switch allows devices to

communicate simultaneously by creating a dedicated link between the

communicating devices. SAN switches come in categories of 8 ports to

hundreds of ports for every switch. In a SAN there are two types of switches

that are used that is modular switches and enterprise switches. Standard modular

switches are used to in small SAN fabrics, consequently to scale for the network

you have to add more switches(Osama, 2011). The enterprise switches are

mostly used at the core of the network. This is because they are built for high

resilience and can be serviced without purring them offline. In addition parts

can be replaced when the switch is on to ensure high availability(Malviya,

2016).

The data routers are best known as bridges or gateways and are used to

interconnect ISCSI servers and other devices in a SAN. The data routers enables

for intelligent bridging where the servers in a SAN were able to address older

disks and tape drives. A data router can also be used to bridge between an IP

SAN and an FC SAN.

25

 2.5.3 The Storage Layer

The storage layer contains the types and disks for storing data. They include

storage arrays and RAID(Gode, Kashalkar, Kale, & Bhingarkar, 2014). Storage

arrays is a collection of disk drives where data is stored. It is known as storage

array because it consists of a group of independent disk (RAID)(Jaichandra &

Prasannakumar, 2015). For example if there are three 100GB drives which are

combined so that there is only one 300GB disk, this is called disk arrays. If data

is striped across all the disk drives and include an extra disk with a copy of the

data then this is known as a RAID. If there are many disks combined in their

hundreds results in the creation of a huge disk drive known as logical unit. The

difference between storage array and internal hard drive in a computer is that a

storage array can be accessed by all the hosts in a SAN(Hemke et al., 2013).

Redundant array of independent disks (RAID) is a combination of independent

disks used to create a bigger drive known as RAID set. Use of RAID comes

with two advantages that is high availability and good performance.

Performance is improved due to the ability of a host to be able to access more

than one disk. On the other hand availability is improved due to the ability to

restore data using parity information which exists in either of the disks in a

RAID set. Therefore if one disk fails parity information in other disks can be

used to restore information(Noertjahyana et al., 2020).

RAID can be numbered from 0 to 6.The numbering symbolize the level of

RAID used. RAID sets 0, 1 and 5 are the most popular levels of grouping drives

since they have the best variation of redundancy and performance. In situations

26

where data loss is unimaginable RAID6 is preferable since it provides two parity

drives for restoring lost data, however it is slower than other types of RAID(H.

Lim & Choi, 2005).

RAID 0 is also known as data stripping. Data stripping means chunks of data

are spread across multiple disks(at least two disks) in a RAID set which

increases performance since the workload of storing and retrieving data is

shared among drives (Jacob, 2017). RAID 1 is also known as disk mirroring due

to the fact that data is written on all the physical devices to create mirror images

of the data(Chiu et al., 2017). This is important because in a case where one disk

fails the other mirror images can be used to restore data lost (Noertjahyana et

al., 2020). RAID 1+0 uses a combination of disks mirroring and stripping. One

can either strip first or then mirror or mirror then strip(Lim & Choi, 2005).

In a RAID 3 environment there is a dedicated disk storing parity information.

RAID 3 is more suitable for long sequential data transfer requests however it

performs poorly with very small requests of data(Hemke et al., 2013). The

configurations of RAID 4 are similar to those of RAID 3, however the point of

distinction between the two is that RAID 4 uses block level stripping while

RAID 3 uses bit level stripping(Wu et al., 2017). RAID 5 is a combination of

parity and disk stripping and is used to achieve fault tolerance(Jacob, 2017).

The RAID 6 setup is used where there is need to store the data over prolonged

time periods. The suitability of RAID 6 for long storage of data is due to the

fact that it has a double parity which reduces the chances of data loss(Romli,

2019). In an adaptive RAID set the controllers choose between either RAID3 or

27

RAID 5 based on performance according to the data being written to the

disks(Wu et al., 2017). A logical unit number(LUN) can be defined as a unit of

storage created from a RAID set(Gaonkar et al., 2013). It could be the whole

RAID set or a partition of the RAID set. To effectively use RAID set it is

recommended to partition the RAID set into LUNs to avoid wastage of

storage(Mistry et al., 2020).

2.6 Classification of Storage Arrays

Storage arrays can be classified based on the size, as either monolithic or

modular arrays(Malviya, 2016). Monolithic arrays are big and expensive with a

lot of redundant features for fault tolerance(Romli, 2019). Monolithic arrays are

mainly used in mainframe computers in addition they have huge cache memory

for support of many servers accessing data at the same time. Monolithic arrays

require well-conditioned room with suitable power supply. Due to the high cost

of monolithic arrays they are mainly used in data centers. To make management

of data more efficient monolithic arrays have more advanced intelligent

firmware(Toyoda, Yamaguchi, & Oguchi, 2005).

Modular arrays contain the same redundant features as those found in

monolithic arrays however, they differ in the ability to connect to mainframe

computers and the size of cache memory(Preethi, 2017). Modular arrays cannot

connect to mainframe computers and they have less cache memory compared

to monolithic arrays. In addition modular arrays have fewer ports which means

they can be able to connect to fewer servers. There are two main approaches for

storing data that is centralized and decentralized. In centralized there is one big

28

monolithic storage array while in decentralized approach there could be many

modular arrays spread across the departments(Hemke et al., 2013).

2.7 Storage Area IP Networking

The need for more scalable storage solutions is driving many organizations to

move away from directly attached storage solutions towards SANS. A SAN is

a high speed storage pool that consists of different vendor storage systems,

application servers, storage management software and network

hardware(Salmani, 2015). SANs offer many advantages including: flexible

management due to the fact that you can add servers without affecting stored

data and storage can be effortlessly increased or reduced. In addition SANs offer

flexibility of being able to reconfigure storage without interrupting their

services. SANs reduce business risks through disaster recovery and reduced

revenue loss that may result from downtime(Ren et al., 2015).

Currently the most popularly used transmission media in SANS is fiber channel

(FC) that is aimed at providing high data rate transmissions, low latency and

reliable data transmission between servers(Puters, 2018). Despite the

advantages of reliability, low latency and high speeds, FC SANs are expensive

that most medium sized organizations cannot afford. In contrast to FC SANs

that require different and costly network infrastructure, IP SANs utilize the

existing IP network infrastructure which can provide a noteworthy cost

reduction in hardware, deployment and operations. To create IP SANs,

protocols that are able to transport storage commands over the IP network are

required. These protocols include the Fiber Channel over IP (FCIP), Internet

29

Fiber Channel Protocol (iFCP) and the Internet SCSI Protocols (iSCSI) (Liang,

Long, Mei, & Wang, 2019).

2.7.1 Fibre Channel over Internet Protocol (FCIP)

Fibre Channel over Internet Protocol (FCIP) operates as a tunnel protocol for

fiber channel frames by wrapping them within TCP/IP. The main application of

FCIP is interconnecting FC SANs over long geographical areas where TCP/IP

services are only used for interconnection of remote SANs(Hemke et al., 2019).

Therefore FCIP contains minimal IP information and only creates a Fiber

channel extension. This way storage is consolidated and creates a larger storage

capacity out of the many earlier separate ones(Martins & Zucch, 2019). Error

handling is done by TCP/IP services as well as congestion control management.

The most important benefit of using FCIP is it’s ease of set up and the fact that

it overcomes distance limitations associated with Fiber channel(Li & Cao,

2017). However the shortcoming of using FCIP is its vulnerability to

disruptions and requires creation of two separate networks using two separate

platforms and does not provide a direct migration path to IP SANs(Liang et

al., 2019).

2.7.2 Internet Fiber Channel Protocol

Internet Fiber Channel Protocol (IFCP) provides a way of transmitting data from

one FC SAN to the other through the internet or IP network using TCP/IP

services. Whereas FCIP is a tunneling protocol IFCP provides routing

services(Dapeng, Chuanyi, & Dongsheng, 2010). This implies that FCIP links

FC SANs over the IP networks whereas the IFCP protocol provides TCP/IP

30

interconnections between end devices directly hence eliminating the need to

have fiber switches by providing an IP storage switched network. IFCP was

originally developed by Nishan Systems, acquired by McDATA in September

2003(Dhaini & Shami, 2008).

Internet Fibre channel protocol and ISCSI use the same iSNS mechanism. IFCP

makes it possible for data to be transmitted as IP packets and also allows for the

sharing of packets. Some FCIP configurations when using software

compression can achieve similar results, but not otherwise. IFCIP generally

breaks the existing Fiber Channel packet into dedicated IP packets. IFCP is only

able to compress the payload but not the header information. Compressing the

header information would have been useful as it would simplify diagnostics.

(Datsika et al., 2018). IFCP uses one TCP connection per fabric login (FLOGI),

while FCIP typically uses one connection per router link although more are

possible(Fang et al., 2019). A FLOGI is the process by which an N_PORT

acquires a class of service as well as the address. Because under IFCP there is a

separate TCP connection for each N_PORT to N_PORT couple, each

connection can be managed to have its own QOS identity(Mebarkia & Zsóka,

2019). A lone occurrence of congestion does not have to reduce the sending rate

for all connections on the link. While all IFCP traffic between a given remote

and local N_PORT pair must use the same iFCP session, that IFCP session can

be shared across multiple gateways or routers (Murizah & Hafizoah, 2011).

Advantages of IFCIP includes overcoming scalability issues associated with

Fibre channel since it is not reliant on Fibre channel routing protocols. Another

advantage is that iFCIP uses open shortest path first to ensure autonomy so that

31

disruptions in one SAN are not propagated to others. Another appeal for IFCP

is that it enables the interconnection of a wide variety of FC devices to the IP

network(Noorshams, Kounev & Reussner, 2013).

2.7.3 Internet Small Computer System Interface

The internet small computer system interface (ISCSI) protocol implements a

client/server model, with clients also called initiators issuing requests

commands to the server also called the target(Li & Cao, 2017). The SCSI

transport mechanism maps the ISCSI protocol to a particular interconnect. The

SCSI protocol is mapped over various transports, including Parallel SCSI,

Intelligent Peripheral Interface (IPI), IEEE-1394 fire wire, and Fibre

Channel(Nleya & Mutsvangwa, 2018). All of these modes of transport provides

the mechanisms necessary to transmit SCSI commands over TCP/IP in order to

exploit the advantage of the already established internet infrastructure. A

session identity uniquely identifies a session established between an initiator

and a target and is made up of the initiator ID and the target tag (Ravindran,

Rabby & Liu, 2009). The iSCSI commands direction of transfer is stipulated

based on the initiator position. Packets are termed as outgoing when they

originate from the initiator towards the target .On the other hand inbound

packets are those that are produced by the target towards the initiator(Yang et

al., 2018). To ensure performance is not compromised, ISCS uses phase

collapse, a mechanism where a command and its data can be transmitted

together from the initiator to the target. The phase collapse also ensures that data

and its acknowledgements are transmitted together(Mebarkia & Zsóka, 2019).

32

An iSCSI name is not tied to a specific port or address but it specifies a logical

initiator or target. In a case where many NICs are used, they point to the same

iSCSI initiator name for the targets as they are paths to the same SCSI layer. In

the context of operating systems the name entity is used to refer to the operating

system image (Iqbal & Rikli, 2011). ISCSI is a storage network transport

protocol that transmits SCSI packets over the IP network by encapsulating them

into TCP packets.

2.7.4 The ISCSI Structure

The iSCSI structure links initiator and target nodes over IP. The iSCSI initiators

include devices like file servers and hosts that transmits data to iSCSI target

nodes and encapsulate storage data into TCP/IP for transmission over the IP

network(Martins & Zucch, 2019). The ISCSI targets breaks down ISCSI

commands from target and processes them(Salmani, 2015). The iSCSI targets

include devices that accept iSCSI commands and transmit data across the IP

network through equipment such as routers and switches. Figure 2.2 illustrates

an IP-SAN based on ISCSI. Examples of iSCSI target include disk arrays, RAID

devices and tape libraries(Hemke et al., 2019).

33

Figure 2.2: IP SAN Based on ISCSI(Source:Nleya & Mutsvangwa, 2018).

 2.7.5 Internet Small Computer System Interface Protocol Stack

The ISCSI architecture is based on a client server model. Figure 2.3 illustrates

the ISCSI protocol stack. At the application layer there is the ISCSI protocol of

which the ISCSI commands are used by the target and initiator communication.

The SCSI commands are encapsulated into TCP/IP for transmission across the

network linking the target and initiator(Gauger, 2005). At the session layer there

is the ISCSI session which establishes a session between a storage device and

TCP/IP. The ISCSI session is responsible for login, target discovery,

authentication and session management. TCP is used to provide reliable

communication (Nleya & Mutsvangwa, 2018).

IP-Based

Storage

IP storage
Switch

Application
Servers

Ethernet

switch

Client
Machines IP-SAN

34

The ISCSI encapsulates the request into TCP/IP adding routing, control

information and error checking. The message is then sent the network using the

HBA(Neto, Fonseca, & Member, 2007). At the destination the packets go

through a reverse process of reassembling data which is then passed to the SCSI

controller. The SCSI controller then proceed to either read or write data to the

target device(Noertjahyana et al., 2020).

Figure 2.3: ISCSI Protocol Stack(Source:Nleya & Mutsvangwa, 2018).

2.7.6 Internet Small Computer System Interface Naming

Internet Small Computer System Interface name is a unique identifier for

initiators and targets in an IP SAN. An ISCSI name could be a combination of

an asset tag, department names and manufacturer name. There are two types of

ISCSI names that is the ISCSI qualified name and extended unique

identifier(Mebarkia & Zsóka, 2019).The ISCSI qualified name is generated by

use of a domain name which is reserved for a particular organization. The

domain name need to be preserved for that organization to avoid conflicts where

other organizations cold use the same domain name(Hemke et al., 2019).

INITIATOR

Application

SCSI

ISCSI

TCP/IP

Application

SCSI

ISCSI

TCP/IP
ETHERNET

TARGET

35

Extended unique identifier is a unique identifier based on the IEEE naming

standard. Extended unique identifier consists of 16 characters. The ISCSI

qualified name provides for naming storage devices for easy management.

Network address authority is a type of name that allows for worldwide naming

of storage using the international committee for information technology

standards(Martins & Zucch, 2019).

2.7.7 Internet Small Computer System Interface Host Connectivity

To connect an ISCSI host to a SAN the host requires to have a NIC with the

ISCSI initiator software. For a host to use the ISCSI protocol the initiator

software is installed for routing SCSI commands to the TCP/IP stack(Nleya &

Mutsvangwa, 2018).There are three options for ISCSI connectivity that is a

standard NIC,ISCSI HBA and a TCP/IP offload engine(TOE) NIC card(Li &

Cao, 2017). To save on costs a standard NIC can be used. Since most servers

come with at least one.

The downside of using standard network interface card is that the processing

workload is done by the host CPU as the NIC does not provide any processing

capability(Hassan, Albakr, & Al-dossari, 2017). Therefore if a standard NIC is

used in a heavy workload situation the host CPU could become a bottle neck.

The TCP/IP offload engine could be used as the alternative to NIC in cases of

heavy workload as it does all the TCP management and leaving the ISCSI

management to the host(Nleya & Mutsvangwa, 2018). However ISCSI

management still needs the host CPU. To offload the TCP/IP ISCSI processing

form the host an ISCSI HBA is used. In addition the ISCSI HBA provides a

36

boot from the SAN option using ISCSI otherwise modifications would require

to be performed to the operating system. To achieve fault tolerance it is essential

to use multipathing multiple network interface cards(NICs) for link aggregation

which provides failover or load balancing(Hassan et al., 2017).

2.7.8 Internet Small Computer System Interface Discovery

For an ISCSI initiator to connect to a target, it must first discover the targets

available to it on the network. An ISCSI initiator can do the discovery in two

ways that is by sending targets discovery or by internet storage name service(Li

& Cao, 2017). When using the send targets discovery the initiator is configured

with the targets network protocol which it uses to make discovery session with

the target ISCSI service(Martins & Zucch, 2019). In this case the initiator

makes send target command and the target responds by providing the names

and addresses available to the initiator(Hemke et al., 2019). On the other hand

the internet storage name service provides for the automatic discovery of

devices in an IP SAN as all the devices are registered with the internet storage

name service server. In this case to know the targets available to it, the ISCSI

target just queries the internet storage name service server(Nleya &

Mutsvangwa, 2018).

2.7.9 Internet Small Computer System Interface Session

A session is created amongst a iSCSI initiator and a iSCSI target once an iSCSI

initiator makes a logon or links to a target(Yakti & Salameh, 2019). During the

session the initiator and the target are able to authenticate each other. Thereafter

ISCSI facilitates the transmission of SCSI commands over TCP/IP(Dapeng et

37

al., 2010). The connection between an initiator and a target contains a group of

TCP connections which creates a session. A session is composed of a session

ID which includes the target part (TSID) and the initiator part (ISID). An iSCSI

session is made up of two phases. That is the login session where the target and

initiator authenticate each other(Hassan et al., 2017).

 During the log in session the target and initiator negotiate parameter for the

session. The login session is followed by a full phase session where ISCSI

commands and data are sent(Bigang et al., 2006). In ISCSI, sessions can be

classified as either an operational session or discovery session. The discovery

session basically aims at establishing all available targets(Liang et al., 2019).

The parameters negotiated during the login phase determines how many TCP

connections can be established over the physical interfaces, data integrity

checks and levels of error recovery. Each connection has a unique connection

ID (CID), however new TCP connections may be created or existing ones may

be removed from the session(Dapeng et al., 2010).

38

Figure 2.4: ISCSI Session Error Handling(Source:Nleya & Mutsvangwa,

2018).

In order for any process to recover from an error it requires to maintain enough

state and data. Figure 2.4 illustrates ISCSI session error handling(Han et al.,

2018). For ISCSI error recovery the ISCSI initiator needs to preserve the

required command and data so as to be able to reconstruct new PDUs. On the

other hand, the target needs to keep any unacknowledged data and its status

response information(Ferrera & Niguidula, 2017).

Internet small computer system interface (ISCSI) uses retry and reassignment

as mechanisms for handling errors. In retry the initiator may resend any missing

commands or PDU data to the target(Jaichandra & Prasannakumar, 2019). The

reassignment is used to recover errors where the TCP connection between the

target and the initiator is lost(Ren et al., 2019). In a scenario where the TCP

connection is lost the initiator creates a new connection and sends a task

Server

Node/Storage

Client Node

ISCSI initiator

ISCSI Target

Ethern

et

N
I
C

N
I
C

N
I
C

N
I
C

Ethern

et

ISCSI

session

ISCSI

Target

39

management PDU informing the target to continue the connection using the new

CID(Wang et al., 2015).

There are three levels of error detection and recovery provided by ISCSI

protocol that is Level 0, Level 1and Level 2(Hemke et al., 2019). In level 0,

error recovery results in the dropping of the session and the session need to be

restarted all over again by the application. Level 1 error recovery is done by

retransmission for the corrupted PDU(Protocol Data Unit)(Martins & Zucch,

2019). This process is not associated with the SCSI layer. Level 2 is a robust

error recovery which implements a complete connection recovery. In cases

where there are many connections if one fails it is moved over to existing

connections in a transparent manner(Wang & Wang, 2013). Level 1 and level 2

are more suited for mission critical where only undesirable sessions are

dropped. Currently most ISCSI targets support Level 0 recovery which

discovers and prevents data corruption. This is because users may rather deal

with session loss than corrupted data(Ren et al., 2019).

2.7.10 ISCSI Session Logout and Shutdown

The logout procedure is started by the initiator for and is used to close the

session or connection(Murthy, 2015). However in cases where there are errors

the target is the one that initiates a session by sending an asynchronous iSCSI

command. In both cases it is the initiator that transmits a logout requests after

which no more connections may be established. The targets responds with a log

out message that the cleanup is complete and no more communications will be

sent on the current session(Dapeng et al., 2010). Additionally the logout

40

message from the target includes the duration of time that target wait for

information used for recovery purposes (Time2Retain) and the amount of time

the initiator will have to wait before trying to create another

connection(Time2Wait).Lastly the session and connections are closed by

transmitting the TCP FINs(Sheltami, 2019).

2.7.11 ISCSI Protocol Data Unit

All communications between the initiators and targets is done using iSCSI

Protocol Data Units (PDUs).This means that ISCSI uses PDUs as the basic unit

for communication. ISCSI PDUs contain header segments and data segments.

To facilitate their transport via IP network, PDUs are encapsulated in an IP

packet for transport(Nleya & Mutsvangwa, 2018).

Figure 2.5: ISCSI PDU Encapsulation in an IP Packet(Source:Dapeng et al.,

2010)

A PDU is made up of the segments shown in Figure 2.5 .The IP headers includes

information necessary for routing the packet across the network while the TCP

header includes information for ensuring guarantee delivery of packets to the

target(Narale, 2019). The iSCSI header contains information on how the target

41

is supposed to extract data and SCSI commands(Sheltami, 2019). The header

also contains an optional CRC also known as digest which is used to for data

integrity and error correction. Examples of PDUs used in ISCSI include

SNACK PDU, Ready to Transfer (R2T), Data In/Out, Login Request/Response

and iSCSI Command/Response(Narale, 2019).

2.7.12 ISCSI Read and Write Operations

The most significant operations in an ISCSI SAN is the read and write

operations. Distinct PDUs are used for the read and write operations(Liang et

al., 2019). Once a session is started, the initiator is then able to transmit data-

in PDU for the read operation and a data-out PDU for use during the write

operation(Nleya & Mutsvangwa, 2018). For the transfer of data from the

initiator to the target the command PDU is used. When the initiator desires to

write data to the target it first issues an ISCSI write command(Liang et al.,

2019). In return the targets issue a R2T PDU informing the initiator which

volume of data needs to be transferred. After the initiator receives the R2T PDU

from the target it responds with data out PDUs encapsulating the SCSI data.

Alternatively if the initiators requires to read from the target, it issues a read

request inform of ISCSI data in PDUs(Li & Cao, 2017). After the data transfer

is complete the target sends to the initiator a SCSI response PDU indicating

successful completion of transfer of data and any error detected. Each SCSI

command PDU corresponds to SCSI response PDU with zero or more data

PDUs(Dapeng et al., 2010). The ISCSI data with their corresponding response

PDUs are sent through the matching TCP connection through which their ISCSI

command PDU was sent(Nleya & Mutsvangwa, 2018).

42

2.8 Topologies for iSCSI Connectivity

There are two variants of topologies that can be used to create ISCSI SANS

namely native and bridged topologies. The native topology allows

communication only via IP and therefore no FC components are

included(Hemke et al., 2019). In the case of native topology the initiators are

connected directly to the targets or connected via IP switches and routers. On

the other hand bridged topologies includes bridging between IP and FC. For

instance the initiators can be in an IP network while the targets could be in an

FC SAN(Martins & Zucch, 2019). Figure 2.6 illustrates the bridged and native

connectivity.

43

Figure:2.6:ISCSI Connectivity (a)Native ISCSI Connectivity (b)Bridged ISCSI

Connectivity (Source:Lumb et al., 2003)

2.8.1 Native ISCSI Connectivity

For implementations where we have an ISCSI enabled array FC interconnection

is not required. In the illustration presented in Figure 2.12 (a) there is an array

of storage disks connected to an IP switch with an IP address and a listening

port configured. Once the configuration of initiators is done, connection to the

storage array is possible(Wang & Wang, 2013). The initiators immediately

(b)

(a)

44

requests for a list of logical unit numbers (LUNs) which are used to identify

particular devices in the SAN(Meth & Satran, 2003).

Multiple initiators can be serviced by a single array port so long as the storage

array can be able to handle the requests generated by the initiators(Martins &

Zucch, 2019). To ensure availability many arrays are configured so as to have

numerous targets configured on the initiators. Some NAS storage devices can

be configured to function as ISCSI targets for file and block level access to SAN

especially in situations where an ISCSI bridge is not available(He, 2019).

2.8.2 Bridged ISCSI Connectivity

Bridged based ISCSI topology includes the FC components(Martins & Zucch,

2019).Figure 2.12(b) illustrates a bridged topology interconnected to a FC

storage disks servicing a group of initiators interconnected using ISCSI(Toyoda

et al., 2005). The storage disks array does not include Ethernet ports which

makes it necessary to have a gateway to bridge the IP network with the FC

SAN(Wang & Wang, 2013). In this topology the bridge device contains

Ethernet ports for connection to the IP network and FC ports for connection to

the ISCSI storage array. The ISCSI arrays is assigned the same IP addresses as

the Ethernet ports. The initiator is assigned identical IP address as the bridge,

the bridge is configured with one or more FC virtual initiators(He, 2019).

2.9 Introduction to Quality of Service

Quality of service(QOS) in the context of this study is defined as the

management of data transmission capabilities of a network in order to offer

prioritization(Guo, 2019). In any network environment QOS is vital since it can

45

be used to optimize performance of a network in terms of jitter, packet loss,

latency and throughput(Sheltami, 2019).

2.10 Levels of Quality of Service

The levels of QOS include the modes used to provide QOS for flows in a

network. These include best effort, differentiated service and Guaranteed

Service(Haghighi & Heydari, 2018)

2.10.1 Best effort QOS

In best effort service no guarantees on whether a packet is delivered or not. Best

effort does not include QOS since no guarantees are provided in forwarding

traffic(Wang, Member, Li, & Wu, 2018). File transfer protocol is able to work

well with best effort however other applications require QOS in terms of

bandwidth, delay and packet loss(Raschellà, Bouhafs, Seyedebrahimi, Mackay,

& Shi, 2017).

2.10.2 Differentiated Service

In the differentiated level, traffic is put into classes based on their requirements.

Each class is serviced based on the configured QOS for the class(Samadi,

Member, Fiorani, Shen, & Member, 2017). It is important to note that

differentiated service does not provide QOS guarantees it only treats traffic

differently based on their QOS requirements. Due to this fact differentiated

service is known as soft QOS(Haghighi & Heydari, 2018).

2.10.3 Guaranteed Service

In this level resources are preserved to meet a flows service requirement. This

means it requires priori resource reservation(Zhao, 2018). For this reason it is

46

known as hard QOS since it offers rigid guarantees in the network. Resources

reservations don’t scale well in case there are thousands of flows at a particular

time. To make this mechanism scalable aggregate reservations are used as a

means of providing scalable guaranteed service(Datsika et al., 2018).

2.11 Quality of Service Functions

This section looks at the QOS functions including packet classification and

marking, traffic rate management and resource management/allocation.

2.11.1 Packet Classification and Marking

The function of packet classification and marking is meant to establish packets

belonging to a given class based on header information(Haghighi & Heydari,

2018). A marker is used to color the classes’ traffic using the IP precedence or

the differentiated service code point (DSCP)(Sun, Yu, & Fan, 2020). Packet

classification involves the association of packets to a particular class based on

header information fields. The identification for classification can range from

simple to complex. The different classification types includes the flow of

identification based on destination address, port number, source IP address,

protocol, source port, port number and source IP address(Zhao, Ma, Zhou, &

Zhang, 2018).

Another way is by use of differentiated service code point field or priority. In

other cases packet length could be used to classify the packets(Guo, 2019).

Packets could also be classified using the source and destination physical

addresses also known as media access control (MAC) addresses. Classification

of packets can also be achieved using any information residing in the router(

47

Zhu et al., 2019). Packet classification is also referred to as packet coloring or

parked marking. Coloring is meant to identify a packet belonging to a particular

class. Packets are colored by marking the Differentiated Service Code Point

(DSCPD) field or the IP precedence field. The IP precedence field is used to

specify the priority with which a packet should be handled(Sheltami, 2019).

The IP precedence field consists of 3 bits and is contained in the type of service

byte. Also includes in the IP precedence bits is the type of service bits(Haghighi

& Heydari, 2018). Type of service bits are meant to inform on how packet are

to be handled in a network. However the type of service bits are not much used

in the real world(Khakurel & Musavian, 2018). DSCP field is a 64 bit field in

the IP header and is similar to the IP precedence field hence it is configured in

similar ways as the IP precedence(Khadir, Guermouche, Guittoum, & Monteil,

2022).

2.11.2 Traffic Rate Management

The traffic rate management function is used to cater for traffic entering the

network belonging to a particular class against the allocated resources. Traffic

entering the network need to be policed to ensure users consume within a given

service limit and also avoid congestion(Guo, 2019).

Congestion degrades network performance which makes it impossible to

provide QOS. Traffic policing and shaping are the two techniques used for

traffic rate management(Zhu et al., 2019). The two techniques differ on how

they treat traffic when the link capacity is exhausted(Ppallan et al., 2021). That

is the policing drops packets when the link is exhausted while the traffic shaping

48

delays packets and sends them later when capacity is available(Haghighi &

Heydari, 2018). Another distinction is that the policing allows for bursts

whereas traffic shaping send out packets at a constant rate(Zhao et al., 2018).

Traffic rate management uses a metering mechanism to measure the traffic.

Token bucket algorithm is the common mechanism used by both policing and

shaping to measure traffic(Sheltami, 2019). Token bucket algorithm determines

whether a packet is conforming or non-conforming to the profile configured for

it(Haghighi & Heydari, 2018). The token bucket only measure traffic and does

not filter, alter or act on the traffic. Depending on whether the packet is

conforming or not conforming the algorithm will either transmit or drop the

packets(Sun et al., 2020).

2.11.3 Resource Allocation

Resource allocation inside a router is done with the aid of a scheduling

algorithm which determines the packet that leaves the queue(Liu, Lu, Xiao, Liu,

& Xiong, 2021). How regularly a packet is served defines its resource allocation

and bandwidth(Li, Wen, & Luo, 2018). The traditional scheduling algorithm is

FIFO however it is not able to offer prioritization therefore not able to

implement QOS(Zhu et al., 2019).

Packet dynamics and interconnection between networks of different bandwidth

may lead to occasional or constant network congestion(Sheltami, 2019). In

networks where there is no congestion any scheduling scheme can work

however when there is congestion a scheduling mechanism is required in a

49

router to determine which packets in a queue are to be serviced(Haghighi &

Heydari, 2018).

For a scheduling algorithm to be able to achieve QOS it requires to be able to

differentiate packets based on their priority or service level(Dahan, Hindi,

Ghoneim, & Alsalman, 2021). Scheduling algorithm should be able to prioritize

traffic as well as allocate resources on per flow basis(Zhu et al., 2019). In

addition a scheduling algorithm is required to provide performance isolation and

fairness among flows. Other requirements that a scheduling algorithm should

meet include ease of implementation and flow admission control(Guo, 2019).

2.12 Quality of Service Metrics

Quality of service is a property of a network that enables the (Yan, Zhang,

Zhong, Zhang, & Xin, 2022)provision of services to users based on their

priority(De Rango & Fazio, 2022). QOS ensures that applications operate

within their service level agreement. QOS can also be viewed as the ability of

a network to provide performance guarantee in the network for different types

of loads in a communication system(Backia, Baskaran, Raja, & Member, 2017).

Metrics for measuring QOS include latency, packet loss and jitter. By

Measuring jitter, packet loss and latency, it is possible to determine the level of

quality of service provided to its users (Datsika et al., 2018). The following

sections looks at the QOS metrics in detail.

 2.12.1 Packet Loss

Packets sent may fail to reach their intended destination. This situation is called

packet loss(Dahan, 2021). Situations that may result in packet loss include

50

congestion which is caused by an increase in the number of users in the network.

Another reason for packet loss is traffic policing. Traffic policing admit packets

that conform and drop those that do not conform(Dahan, Binsaeedan, Altaf, Al-

Asaly, & Hassan, 2021). Poorly formulated traffic policy rules might result in

huge packet losses (Ding, Niu, & Wu, 2018). If by any chance the load of traffic

that is generated in the network exceeds the bandwidth ability, policing

mechanism will drop the excess traffic(Ezdiani, Nor, & Al-anbuky, 2019).

Packet loss can be calculated using equation 2.1 (Favraud, Chang, & Nikaein,

2018).

Packet loss =
𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑒𝑛𝑡−𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑

𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑒𝑛𝑡
𝑥 100 2.1

Source to destination packet loss is one of the most important QOS performance

metrics for many applications such as storage because performance will drop

dramatically if the packet loss exceeds a certain limit, and will be rendered

unusable if the packet loss is very high(Barzegar & Fatehi, 2022). The standards

for packet loss are as illustrated in Table 2.1.

51

Table 2.1:Quality standards TiPhone TR 101 329 for Packet

Loss(Source:Favraud et al., 2018)

Packet Loss standard

Category Packet loss

Excellent 0%

Good 3%

Medium 15%

Poor 25%

One way of eliminating packet lost is by ensuring there are no devices which

are defective that could lead to packet loss(Fang, Qiu, Ding, & Ding, 2018).

2.12.2 Latency

The time delay that a packet experiences as it moves from source to destination

is known as latency(Lv, Yi, He, & Zeng, 2022). Variations in the latency can be

caused by the quality of the network devices (cable / router /switch),

serialization delay, routing and switching latencies, and queuing and buffer

management(Hou, Chang, & Yang, 2017). Latency can be categorized as either

packetization latency, queuing latency or propogasi all depending on how it is

formed. Packetization delay is the delay that is as a consequence of time in the

creation of a packet. That is the delay a packet experiences during formation.

Queuing latency is formed inside the router where there are queues for

processing packets before routing(Nosheen & Khan, 2021). When a packet

experiences delay routing due to queue lengths in the router, the situation is

called queuing latency (Xiaoyan Huang, Yang, Member, Wu, & Leng, 2017).

52

Delay Propogasi is the delay caused by nature of the transmission media(Han,

Li, Tang, Huang, & Zhao, 2018). The nature of network equipment’s is a major

influence to propagation delay. Propagation delay refers to the time a packet

needs to move from source to destination at the speed of light(Hou et al., 2017).

In copper and Fibre optic transmission media, the speed of light is

reduced(Ademaj & Bernhard, 2022). The reduction in speed associated by the

nature of transmission media is referred to as velocity factor (VF).The velocity

factor for copper and fiber optic cable are closely the same. Fiber optic cable

speed is estimated at 70% of that of the speed of light while that of copper cable

is between 40% to 80%(Hassan et al., 2017). Transmission Delay refers to the

duration of time a packet takes to move from end to end in a medium. The

quantity of data and the speed of the transmission media determines the

transmission delay(Jalodia, Taneja, & Davy, 2021). Processing delay is the

amount of time required by a router to establish the route for a packet. Table 2.2

outlines the standards for latency(Ding et al., 2018).

Equation 2.2 is used to calculate the value of the delay experienced by a

packet(Ferrera & Niguidula, 2017).

Packet delay =
𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑖𝑡)

𝑙𝑖𝑛𝑘 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑏𝑖𝑡/𝑠)
 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 2.2

53

Table 2.2: Quality Standards ITU-T G.114 for Delay(Source:Favraud et al.,

2018)

Delay (latency)

standard

Category Delay

Good 0-150 ms

Medium 150-400ms

Poor >400ms

2.12.3 Jitter

The delay variations in packet delivery is known as jitter .Jitter can be caused

by deviations in traffic flows and the quantity of collisions between packets

(congestion) on the network (Ferrera & Niguidula, 2017). Congestion in a

network happens when traffic exceeds the existing bandwidth so as to degrade

the network performance. Small amounts of jitter do not affect network

performance. Table 2.3 outlines the standards for jitter(Favraud et al., 2018).

Calculation to find the value of jitter is done using equation 2.3.

Jitter =
∑𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦

∑𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑
𝑠𝑒𝑐𝑜𝑛𝑑𝑠 2.3

54

Table 2.3: Quality Standards ITU-T G.114 for Jitter(Source:Favraud et al.,

2018)

Jitter standard

Category Delay

Good 0 s/d ms

Medium 20 s/d 50 ms

Poor >50 ms

To overcome the adverse effects of jitter a network administrator needs to

implement bandwidth management which will ensure excess bandwidth is

shared as needed or also increase the amount of bandwidth(Jia, Han, Zhang,

Liu, & Shu, 2015).

2.12.4 Throughput

Throughput is the definite bandwidth m measured in a precise time and in a

certain network conditions that are used to transmit files of a certain size.

Network throughput refers to summation of speeds of all the data transmitted to

all nodes in a network. Throughput standards are as illustrated in Table 2.4 and

equation 2.4 is used to calculate the amount of throughput(Xiaoyan Huang et

al., 2017).

Throughput =
∑𝑠𝑒𝑛𝑡 𝑑𝑎𝑡𝑎(𝑏𝑖𝑡𝑠)

𝑡𝑖𝑚𝑒 𝑑𝑎𝑡𝑎 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦(𝑠)
 2.4

Table 2.4: Quality Standards ITU-T G.114 for Throughput

(Source:Favraud et al., 2018)

Throughput standard

Category Delay

Excellent 100%

Good 75%

Medium 50%

Poor <25%

55

Throughput describes the real bandwidth at a particular time and on given

conditions used to download a file of a certain size(Wang, Member, Li, & Wu,

2018). Factors that influence throughput include the count of network users,

network topology ,weather, network devices and electric induction (Zhao,

2018).

To reduce the effects of low throughput network manager need to establish the

capability of network equipment’s to be used based on their ability to handle

the network load(Raschellà et al., 2017). Bandwidth borrowing can also be

employed to ensure sharing of bandwidth as may be required(Hassan et al.,

2017). The network topology also can be reviewed to get the one that suits the

current type of network(Mebarkia & Zsóka, 2019).

2.13 Quality of Service Architectures

Quality of service architectures are schemes for providing quality of service in

a network. They include; Integrated Services (IntServe) Architecture,

Differentiated Services (DiffServ) Architecture and Multi-Protocol Label

Switching(Li & Cao, 2017).

2.13.1 Integrated Services (IntServe) Architecture

IntServ is designed to provide QOS guarantees by reserving bandwidth before

data is transmitted(Li & Cao, 2017). When a flow with a particular QOS

requirement arrives at an ingress router, Intserv’s Resource Reservation

Protocol initiates a path establishment process by sending a path message to the

destination router. The destination edge router tries to reserve bandwidth by

56

sending a reserve (RESV) message back to the ingress router(Samadi et al.,

2017).

2.13.2 Differentiated Services (DiffServ) Architecture

The differentiated services approach provides a simpler and more scalable

QOS by minimizing the amount of storage needed in a router by processing

traffic flows in an aggregate manner, moving all the complex procedures from

the core to the edge of the network(Ferrera & Niguidula, 2017). One of the main

features of a diffserve architecture is the traffic conditioner. As illustrated in

Figure 2.7, the traffic conditioner contains four main components that is the

marker, dropper, meter and shaper. A meter establishes the traffic profiles to

ensure that a certain flow does not exceed its allocated resources. A marker

labels a packet in order to help in tracking the packet across the network

(Ezdiani et al., 2019). A shaper is responsible for delaying the packets that

exceed their allocated bandwidth as they wait for more bandwidth to be

available. A dropper is responsible for dropping packets that violates their

profiles(Datsika et al., 2018).

Figure 2.7:Overview of DiffServ operation(Source:Ezdiani et al., 2019)

Traffic
Classifier

Traffic
Dropper

Traffic
Shaper

Packet
Marker

Traffic
Meter

Packets

57

2.13.3 Multi-Protocol Label Switching

Multi-Protocol Label Switching (MPLS) is a packet forwarding scheme that

uses fixed length labels to decide how packets are to be handled. As a packet

enters the ingress router (known as a Label Edge Router (LER)) of an MPLS

domain, a short fixed-length label is attached(Samadi et al., 2017). As the packet

traverses the interior nodes of the MPLS domain, the label rather than the

original headers is used to make forwarding decisions(Yang, Li, Liu, & Ma,

2018).

2.14 Techniques for Providing QOS in Internet Protocol Networks

Provision of QOS in IP networks includes various techniques implemented

using queuing and scheduling techniques, admission control techniques, and

congestion avoidance techniques. The following sub-sections present different

techniques whose goal is to ensure that high priority traffic is treated different

from less important traffic using either scheduling techniques, bandwidth

management techniques or burst handling techniques (Yang et al., 2018).

2.14.1 First in First out Queuing (FIFO)

First in first out (FIFO) is a very common used queuing technique due to its ease

in configuration. Packets belonging to different flows pick up in the FIFO queue

and processed in the order of arrival(Backia et al., 2017). FIFO belongs to the

unconscious group which treat packets as they are. Packets from all input flows

are queued into a memory stack after which they are dequeued in the order of

arrival one by one onto the output link. Since FIFO does not perform any

reorganization of the queue, there is no schedule overhead experienced by

packets(Ding et al., 2018). This means turnaround time, waiting time and

58

response time for FIFO are low. However due to the absence of prioritization,

systems using FIFO experience delays in meeting deadlines (Gulati & Ahmad,

2008). On the other hand lack of prioritization ensures that every process will

eventually complete its transmission without the risk of starvation(Huang,

2013). All packets are placed in a single queue and are treated equally(Jiang,

2019).

In FIFO systems packets are allocated bandwidth in their order of arrival and as

bandwidth becomes available. Since the queue buffer is finite any packets that

cannot be accommodated are dropped. This phenomena is known as tail drop

(Noorshams et al., 2013). FIFO works well in links that are not heavily

congested. Since FIFO works on first come first serve basis, if a node initiates

a large file transfer, it can consume all the bandwidth link to the disadvantage

of other traffic(Paulraj & Kannigadevi, 2019). This phenomena is known as

packet trains since the source sends a train of packets to its destination and

packets from other hosts get caught behind the train(Mebarkia & Zsóka, 2019).

To optimize utilization of network resources FIFO implements traffic shaping

where traffic is delayed until resources are available avoiding the option of tail

drop. In addition FIFO also uses AQM mechanisms to ensure fairness among

flows(Raschellà et al., 2017). Figure 2.8 illustrates the functioning of FIFO

queuing.

59

Figure 2.8:First-In-First-Out (FIFO) queuing (Source:Favraud et al., 2018)

2.14.2 Priority Queuing

In priority queuing, packets are assigned to classes which are associated with

certain priority value. Consequently, packets with high priority are processed

first. Priority queue is able to differentiate traffic hence reducing delay of

important traffic. On the other hand if there is continuous flow of high priority

traffic, low priority will be starved (Fang et al., 2018). In basic implementations

of priority queuing, it consists of four priority queues where packets are handled

using FIFO. Packets belonging to the highest priority queue are serviced first

(Datsika et al., 2018). A packet scheduler is used to check for existence of

packets in the highest priority queue after the current packet is processed. Any

packets that arrive in the high priority queue are processed immediately. The

main benefit of using priority queuing is its ability to guarantee highest priority

to storage area networks(especially for read requests) but on the other hand it

causes delays to packets belonging to low priority class (Ferrera & Niguidula,

2017).

60

Priority queuing is most preferred in situations where mission critical traffic

requires preference. To ensure smooth transition of high priority packets

through the network priority queue uses intermediary network devices for

processing packets(Samadi et al., 2017). To provide differentiated services,

priority queuing classifies traffic with priority labels low, normal, medium and

high. Packets which have not been attached to a class by default are assigned to

the normal waiting queue. Data belonging to the high priority queue is handled

first followed by that belonging to low priority queues. Due to its static

configurations, priority queue is not able to adjust to the network which makes

the technique poor in optimal utilization of resources. Figure 2.9 illustrates the

functioning of priority queuing. For example if a certain traffic flow is not

utilizing its share of bandwidth other flows should be able to borrow the idle

bandwidth (Sugeng, Istiyanto, Mustofa, & Ashari, 2019). All incoming queues

are assigned to a given network interface with each queue having a priority

level(Samadi et al., 2017).

Figure 2.9:Priority Queuing (Source:Favraud et al., 2018)

61

Every time queues are being sent out of an interface the packets are scanned

based on priority with high priority packets being at the head(Nleya &

Mutsvangwa, 2018). However priority queuing has a weakness in that it does

not automatically adapt to changing network requirements due to static

configurations(Kailong et al., 2017). Although priority queuing is simple, in its

implementation the low priority traffic may experience more delay and jitter(

Zhao, 2018).

2.14.3 Class Based Queuing

Class based queuing schedules packets based on a certain guaranteed

transmission rate. If a particular class/queue has got no packets that needs

forwarding, its bandwidth is shared among other queues(Backia et al., 2017).

Class based queuing mechanism has the ability to cope with different bandwidth

requirements since it allocates a specific percentage of the link each class which

can be easily adjusted based on the availability of bandwidth(Ezdiani et al.,

2019). The sharing of bandwidth based on availability ensures there is fairness

in a class(Ferrera & Niguidula, 2017).

To ensure that not a class utilizes more than its fair share of bandwidth, class

based queuing allocates a committed rate for each class which can only exceed

when other classes are not using their bandwidth(Sugeng et al., 2019). The

downside of class based queuing is that it only provides fair allocation if all

packets are of the same size. If it happens that some queues contain larger

packets, the packets end up being delayed(Samadi et al., 2017). This implies

that classes with smaller packet sizes experience shorter delays. In addition class

62

based queuing does not provide strict priority to the deserving traffic such as

mission critical applications(Mebarkia & Zsóka, 2019).

2.14.4 Fair Queuing and Weighted Fair Queuing

The fair queuing scheduling is a mechanism that classifies and forwards packets

according to their configured service agreements. Fair queuing uses a round

robin algorithm to allocate bandwidth where every flow has an equal chance(

Zhao, 2018). The round robin algorithm ensures that flow from one class does

not starve other classes off the bandwidth. The main advantage of priority

queuing is that in a situation where there is congestion in a particular class, other

classes are not affected and therefore the overall network performance is not

affected. The downfall of priority queuing as a scheduling mechanism is that it

does put into consideration the packet length(Mebarkia & Zsóka, 2019). This

means if a particular class has big flows, then the class may use more bandwidth

and therefore take longer to be served. However fair queuing is considered to

be best suited in sharing bandwidth among different classes with the same

bandwidth requirements(Yang et al., 2018).

In weighted fair queuing, inbound packets are clustered into classes and

admitted to separate queues(Mebarkia & Zsóka, 2019). Then these queues are

allocated priority based on their weights, with high weights corresponding to

high priority. After admission packets are processed based on their weights in a

round robin.

For instance if there are weights 1,2 and 3,this means that in the first queue

only one packet will be processed, in the third queue two packets and in the

third queue three packets. By any chance if the QOS mechanism has not

63

allocated weights to the classes all the case by default will assume equal

weights. In this case we have fair queuing with priority(Samadi et al., 2017).

All configurations in weighted fair queuing are automated with no room for

tuning possibilities(Wang et al., 2018).

Weighted fair queuing is suitable for environments where there is a need to

provide a constant rate of response to users or applications. In its

implementations weighted fair queuing uses bitwise fairness where queues are

served based on their byte sizes(Zhao, 2018). The performance of weighted fair

queuing is better than that of TCP since to a significant extent it reduces the

roundtrip time for slow connections by ensuring that the response time of a flow

is reduced by a multiple factor (Nleya & Mutsvangwa, 2018). Bandwidth

assignments are done based on the weights with each flow getting a maximum

length limit(Mebarkia & Zsóka, 2019). Packets are sorted in order of arrival

which determines the weights and transmission order. Weighted fair queuing

supports variable packet sizes which do not determine the amount of bandwidth

allocated to the traffic flows so as to ensure large traffic flows do not have more

bandwidth than small traffic flows(Zhao, 2018). By regulating the weights

automatically, weighted fair queuing is able to provide data rate guarantees by

allocating each flow different bandwidth percentage hence preventing

monopolization of the bandwidth by some flows. Figure 2.10 illustrates the

functioning of WFQ(Samadi et al., 2017).

64

Figure 2.10:Weighted Fair Queuing (WFQ) (Source:Favraud et al., 2018)

2.14.5 Class Based Weighted Fair Queuing

The class based weighted fair queuing scheme traffic is grouped in classes

manually. Manual configuration provides flexibility of assigning bandwidth as

well as an opportunity for the administrator configure customized classes. This

ensures flexibility in allocating a minimum bandwidth amount on the fair

queuing basis as well as on the basis of administrator defined classes(Datsika et

al., 2018). Each class is allocated a guarantee amount of bandwidth and if there

is a class that had no bandwidth allocated it makes use of the spare link

bandwidth(Haghighi & Heydari, 2018). Class based weighted fair queuing may

lead to situations where low priority flows could overrun the high priority flows,

to mitigate this high priority traffic is differentiated in order to give it more

preference(Ferrera & Niguidula, 2017). Figure 2.11 illustrates the functioning

of the CBQ.

Finish

time

Order of packets transmission

19

0

15

5

14

5

13

5

90

19

0

19

0

19

0

19

0

19

0

19

0

19

0

19

0

19

0

Queue 1 50%

Queue 2 25%

Queue 3 25%
Port

65

Figure 2.11: Class-based queuing (CBQ) (Source: Favraud et al., 2018)

2.14.6 Custom Queuing (CQ)

In custom queuing flows are categorized into 16 FIFO queues with a defined

buffer length. Each of the FIFO queues is then assigned a suitable percentage of

the total bandwidth. Scheduling of the queues in the output interface is done in

round robin(Ezdiani et al., 2019). However a fine tuning of row lengths can help

to reach acceptable results. CQ provides guarantees for mission critical traffic

while ensuring that other traffic in the network get predictable throughput

(Wang et al., 2018). For instance in case where we have 16 queues, queue 0 by

default is configured as a special queue for handling control and keep alive. For

the rest of the queues 1 to 15 is used to transmit user traffic and therefore user

traffic cannot be transmitted through queue 0 (Ezdiani et al., 2019).

Traffic classification is based on the access control lists for the input interface,

packet sizes and the type of application utilizing it. After classification, queues

are then served in a round robin manner until a limit threshold is met. Queues

are then served in a round robin manner until a byte counter limit threshold is

Port Real time 25% B/W

Interactive 25% B/W

C
lassifier

Flow

1

Flow

3

Flow

4
Flow

5
Flow

6

Flow

2

File transfer 50%

B/W

66

met after which packet frames from the next queue are serviced (Hemke,

Gawande, Gautum, & Email, 2019). Custom queue routers transmit a

percentage of the configured traffic in each queue before servicing the next

one(Hwang, 2019). During servicing of a particular queue packets are

transmitted until a certain byte count limit is reached or until all the packets are

transmitted and the queue is empty(Zhang, Lei, Zhang, Guan, & Li, 2019).

2.14.7 Modified Weighted Round Robin and Deficit Weighted Round

Robin

Modified Weighted Round Robin (MWRR) uses a variable sized packets to

decide which queue is to be processed(Mary & Jayapriya, 2019). Variable size

is computed using the deficit counter based which is always initialized with the

value of the queues weight. A packet is transmitted when the deficit counter

assumes a value greater than zero (Kulkarni, 2015).

The number of packets, N to be transmitted can be calculated using the formula

in equation 2.5 .Where 𝑤 is the total packets weight and 𝑚𝑝𝑠 is the mean

packet size(Mary & Jayapriya, 2019).

 𝑁 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(
w

mps
) 2.5

High priority packets are permitted to jump to the front of the queue and the

number of packets transmitted is equal to the ratio weight over mean packet

size(Park, Kim, Jeong, Hong, & Kang, 2018). Packets are served from the head

of the queue and if the modified counter is greater than the size of the packet

(Li & Cao, 2017).

67

Deficit Weighted Round Robin (DWRR) was proposed by Shreedher and

Varghese in 1995. DWRR services packets without the consideration for the

mean size but the difference between packet size and packet length(Kailong et

al., 2017). DWRR uses scholachastic fair queuing to assign data flows to

queues(Nleya & Mutsvangwa, 2018). Queues are attended to in a round robin

based on the quantum of service committed to each queue. If a queue is unable

to transmit its packets due the size, the difference from the earlier quantum is

added to the quantum for the next round(Simiscuka, 2017).

Since queues are serviced in a round robin, if a queue fails to get a turn in a

given round it is recompensed in the following round. However once a flow is

serviced it must wait for n-1 other flows to be serviced before it is serviced

again. During each round, a flow transmits its entire quantum data once, as a

result DRR has poor delay(Wang et al., 2018). Each queue of traffic is linked to

a quantum and deficit counter. A deficit counter is initialized to zero and is used

to store the credit of sending data for each queue and on the other hand the

quantum represents the amount of data in bytes that each queue is able to

transmit when its turn arrives(Ezdiani et al., 2019).

For packets to be served their deficit counter must be greater than zero. After a

queue is served a deficit counter is reduced by a value equivalent to the size of

packets sent until the counter is zero or negative after which the queue is no

longer served (Yang et al., 2018). For each particular round of the deficit

counter each non-empty queue is decreased(James & Shaikh, 2019).

68

In Modified Deficit Round Robin (MDRR), after a queue is served a specific

amount of data is dequeued. Then the algorithm proceeds to service the next

queue, if the amount transmitted exceeds the value allocated for a certain queue,

then in the next round less data is transmitted for that queue(Guck, Bemten,

Kellerer, & Member, 2019). As a result, MDRR is able to ensure that the

average amount of data dequeued per queue nears the configured value

(Ferrera & Niguidula, 2017).

2.14.8 Hybrid Waiting Queues

Combining different mechanisms enables the combined mechanism to have the

positive qualities of all the aggregated techniques. However this combination

also includes the weaknesses of individual mechanisms and overhead in

memory when processing them. Overhead in memory is brought about by the

fact that each memory for a given interface is associated with a given amount

of latency for traffic that is transmitted through the interface(Ding et al., 2018).

The more interfaces that traffic needs to go through the more the delay which is

detrimental to applications such as storage area networks read requests(Zhao,

2018). To avert excessive delays, a compromise is made between the size,

length and number of interfaces that data needs to travel through. Small buffer

may cause data spillage while big buffer may cause huge delays a phenomena

known as jitter effect (Favraud et al., 2018).

2.14.9 Custom Class Based Weighted Fair Queuing and Priority Class

Based Weighted Fair Queuing

Custom Class Based Weighted Fair Queuing and Priority Class Based Weighted

Fair Queuing is a combination of custom queuing and class based weighted

69

fair queuing where Custom Queuing(CQ) is responsible for bandwidth

management to avoid congestion(Nleya & Mutsvangwa, 2018). After the

bandwidth management the packets are sent out of the CQ interface to the class

based weighted fair queuing input interface(Zhao, 2018). At the Class based

weighted fair queuing packets are put into classes(Raschellà et al., 2017). With

this method it is possible to reduce the delays within the network, which is not

the case with ordinary CQ scheme(Mebarkia & Zsóka, 2019).

After the CQ and based weighted fair queuing, next the packets are assigned

priority based on their service level agreements(Dong, Xie, Tang, Zhong, &

Vasilakos, 2019). High priority packets that move out the priority queuing

algorithm interface are served fast and since they were already classified and

assigned bandwidth, there is no contention for bandwidth at this time therefore

the high priority packets are transmitted faster independent of other flows(

Zhao, 2018).

2.14.10 Weighted Fair Queuing and Class Based Weighted Fair Queuing

Weighted fair queuing is employed being the first to ensure fairness through

restricting changes to the throughput for all applications(Mebarkia & Zsóka,

2019). After weighted fair queuing packets proceed to the class based weighted

fair queuing algorithm where packets are assigned to classes based on network

administrators specifications(Raschellà et al., 2017). In this way every high

priority application gets its desired bandwidth and the remainder is shared

among all active applications(Dong et al., 2019).

70

Weighted fair queuing is more effective when used in environments where

priority is configured based on IP address(Samadi et al., 2017). Due to its

capability to manage round trip delays, weighted fair queuing is combined with

class based weighted fair queuing as the best solution to reduce Ethernet

delays(Fang et al., 2018).

2.15 Admission Control for QOS

Admission control is used to provide robust performance by limiting the number

of sessions to join the network(Narale, 2019). The main purpose of admission

control is to provide strong performance. This is to ensure that existing sessions

are not degraded and new sessions are provided with QOS(Ramadan, 2017). If

admission of new requests leads to poor performance, new sessions are rejected

or the user is notified that the network cannot offer the configured reserved

resources for a particular session(Narale, 2019). The decision to reject or admit

can be made based on the existing resources such as bandwidth and quantity

active transmissions. Admission control can be implemented either through

explicit control or implicit control(Topalova, 2018). In explicit control

resources are reserved unreservedly with applications sending requests to join

the network via the resource reservation signaling mechanism. The admission

control algorithm implementation depends on the network architecture. In

networks where there are so many interconnected routers the algorithm can be

located in each route.

Admission control helps ensure that classes are offered differentiated services

according to the priority attached to the class and also that no particular class

consumes more than its share of bandwidth. Admission control classifies traffic

71

based on a given service level agreement and the bandwidth allocated to that

class of traffic(Mamman & Hanapi, 2017). To achieve differentiated service

among classes, admission control uses capacity based admission control to

control how classes of traffic are admitted into the network. Admission into the

network is based on first in first serve criteria without any additional checks. In

a case where all the bandwidth is exhausted no more flows are admitted until

some bandwidth is available. To implement priority, admission control allows

flows to preempt other flows based on their priority for some additional

bandwidth. This feature ensures that low priority traffic is able to release its

bandwidth when required by the high priority traffic ensuring quality of service

for high priority flows (Shankaraiah & Venkataram, 2010).

However Kashihara and Tsurusawa (2010) believe that if flow admission of

high priority traffic is not checked then low priority traffic will end up being

starved. After traffic has been admitted into the network through admission

control techniques, traffic shaping mechanisms are used to control the amount

of traffic that circulates the local area network. This is accomplished by

smoothing traffic based on the configured policy file(Wu, & Li, 2018).

In a network there are two categories of algorithms used to implement

admission control namely Measurement Based Admission Control and

Parameter Based Admission Control (Ojijo & Falowo, 2020)

2.15.1 Measurement Based Admission Control

Measurement based admission control algorithms use the network statistics to

make admission decisions(Zhang, Li, Li, & Zhao, 2019). They provide an

opportunity to offer QOS to priori data flows. The measurement based

72

admission control algorithms provide for high link utilization since they are

adaptive. The role of traffic grouping and characterization is shifted from the

user to the network where traffic is characterized based on existing network

conditions. Measurement based admission control has the following

advantages. One it does not lead to overall allocation of resources as resources

are assigned based on network statistics. Secondly QOS decisions are made

based on aggregate behavior of flows instead individual of flows which is

difficult to determine(Fang, Shen, Huang, & Feng, 2021).

However relying on measured quantities for making admission control decision

raises a number of issues. These issues include estimation error, dynamics and

separation of time scales and memory(Ojijo & Falowo, 2020). Firstly the reliant

on estimation to make decisions creates a lot of uncertainty. Since inaccurate

estimates may lead to bad admission decisions. Secondly since the flows of

arrivals and departure vary with time, the effect of flow arrivals and departures

effect on QOS arises. To improve on the accuracy of estimation there is need to

know about flow history. In this case a big window memory is required which

might remove dynamism from the algorithm. This results in a challenge of

determining the appropriate memory size(Wang, Kang, Liu, Ma, & Li, 2020).

2.15.2 Parameter Based Admission Control

Parameter based admission control algorithm makes bandwidth estimates based

on worst case scenario that is where existing flows are sending at their peak

rate(Alvarez et al., 2020). In this case there is low utilization of network

bandwidth in cases where the flows are sending less than their peak rates.

73

Furthermore flows may be denied admission even though the current network

condition allows it(Fang et al., 2021).

2.16 Admission Control Algorithms

Admission control algorithms determine if a packet is to be admitted, delayed

or dropped. These algorithms include simple sum algorithm, measured sum,

acceptance region, equivalent bandwidth algorithm and end point admission

control(Wang et al., 2020).

2.16.1 Simple Sum

The simple sum algorithm is meant to make sure that the requested bandwidth

does not exceed the available bandwidth. The simple sum algorithm is the

simplest of the algorithm and therefore widely implemented in most switches

and routers(Ojijo & Falowo, 2020). To reduce on the queuing delay, the

weighted fair queuing (WFQ) algorithm is used to achieve performance

isolation by grouping flows into queues and availing their reserved rate(Alvarez

et al., 2020).

2.16.2 Measured Sum

The measured sum tries to increase the network utilization by using the

measured load of each flow and assigning bandwidth based on these

measurements(Zhang et al., 2019). That is the reserved rates of flows are

substituted with the measured rates. The only QOS metric used to determine the

admission decision is bandwidth. The measured sum technique is bound to fail

if delay variations are huge especially in high link utilization cases(Vincenzi,

Lopez-Aguilera, & Garcia-Villegas, 2021).

74

2.16.3 Acceptance Region

The acceptance region algorithm makes admission decision based on the

information that either the system fall in the accepted region or rejected region.

The calculation of acceptance region is made based on peak and mean rate. The

acceptance region algorithms are simple however this simplicity results in

simplification of network model which results in limitation of such algorithm(

Wang et al., 2020).

2.16.4 Equivalent Bandwidth Algorithm

Equivalent bandwidth is the least amount of bandwidth necessary for

transmission of traffic generated by a source without QOS violations(Fang et

al., 2021). Each source of flow is allocated an equivalent bandwidth and new

flows are accepted if the sum of the allocate bandwidth are less than the

available link capacity. The equivalence bandwidth algorithm is simple as it

boils down to comparing the sum equivalents to the total available capacity. The

reservation aspect of the equivalent bandwidth may lead to low network

utilization since a traffic source to request more than it can utilize(Vincenzi et

al., 2021).

2.16.5 End Point Admission Control

In the end point admission control the end host sends packet probes on the data

rate it would like to be reserved and notes the experienced packet loss(Ojijo &

Falowo, 2020). Then flows are admitted if the packet loss is at a particular

threshold. The end point admission control does not utilize information that is

kept by router which does not keep per flow state or does not process reservation

75

requests(Fang et al., 2021). Probe packets can be treated as data packets or they

can be assigned higher priority. The end point admission control suffers from

the limitation that estimates may not be in line with what is observed(Zhang et

al., 2019).

2.17 Congestion Avoidance Mechanisms for QOS

Congestion avoidance refers to a group of mechanisms used to control the

congestion and keep network load lower than the cap overall network

capacity(Kotian, Shetty, & Begum, 2017). Congestion avoidance is required to

regulate traffic injection into a network to avoid network saturation, which may

lead to performance penalty(Topalova, 2018). In networks with QOS

guarantees, congestion control mechanisms first attempt to regulate best-effort

and misbehaving real-time traffic, and if required, then traffic from other service

classes. The two main techniques used for congestion avoidance include

Random Early Detection mechanisms and Weighted Random early detection

mechanism(Baklizi & Ababneh, 2016).

2.17.1 Random Early Detection (RED)

Random Early Detection (RED) uses TCP’s based congestion avoidance

mechanism is whereby if there is congestion in the network, RED algorithm

drops packets and informs the source to stop transmitting(Misra, Oommen,

Yanamandra, & Obaidat, 2019). In TCP environment the source reduces its rate

of transmission until all packets reach their destination an indication that

congestion is over. However, without RED which implements early detection

all excess packets would be dropped phenomena known as tail drop due to the

overflow of output buffers. Therefore the implementation of RED in any

76

network reduces the chances of tail drop by dropping packets selectively after

any indication of congestion (Baklizi & Ababneh, 2016).

By dropping packets early RED eradicates dropping huge number of packets

and decreases the likelihood of any global synchronization(Jamali, Alipasandi,

& Alipasandi, 2019). Thus, RED ensures maximum utilization of the

transmission line at all times. In addition RED drops packets from large users’

sources than from small source users, therefore only those sources that transmit

a lot of information are slowed down(Kalav & Gupta, 2019). RED has the

advantage of managing congestion before it reaches a critical point as well as

reducing delay by keeping the size of the queue for the packets not dropped

small(Misra et al., 2019). Through TCP Synchronization avoidance mechanism

RED reduces global instability in the network since many queues don’t signal

their source to decrease their window at the same time. In addition RED ensures

fairness for both smooth and burst traffic since bursty traffic does not suffer

extreme packet loss due to early detection(Sharma & Behera, 2017).

2.17.2 Weighted RED

Weighted RED (WRED) uses priority to drop packets with high priority

packets having a lower probability of being dropped (Topalova, 2018).

However in order to achieve non-weighted behavior RED can be configured to

ignore weights(Alkharasani, Othman, Abdullah, & Lun, 2017). WRED is best

suited on any output interface where congestion is likely to occur for example

in core routers(Jamali et al., 2019).

77

2.18 Packet Classification

When there is a mixture of network traffic it is desirable to maintain

performance isolation among network functions(Bangquan & Xiong, 2019).

Performance isolation is the property of a network where a certain class of users

should not impact the performance of others. In computer networks

performance isolation is achieved through traffic classification(Chin, Xiong, &

Hu, 2018).

Traffic classification is mainly used for two purposes that is the provision of

quality of service as well as lawful interception(Zhigang Liu, 2019). In most

networks, existing applications require different QOS and therefore it’s

important to offer differentiated quality of service for each type of

application(Lopez-martin, Member, & Carro, 2017). There are several

techniques available for traffic classification including use of IP address(Wang,

Chen, Ye, & Sun, 2019). IP address traffic classification can be achieved

through techniques such as by use of ports, deep packet inspection and

classification based on statistical features(Kumar, Kim, & Suh, 2015).

2.18.1 Port-Based Approach

Port based classification is one of the earliest technique of classifying traffic in

a network. Port numbers can be used to identify the application transmitting

traffic and are registered by the Internet Assigned Number Authority (IANA)

(Lopez-martin et al., 2017). Although the use of port numbers for classifying

traffic is simple and fast, its performance is poor. There are two types of ports

78

used in classification that is registered ports and dynamic or private (Sadiq et

al., 2018).

Every TCP connection begins with a handshake and the port number associate

with a certain packet is indicated in the header of the packet and during the

entire period of communication the source and destination use the pair of ports

indicated in the header(Shen, Xia, Zhang, & Jia, 2017). To match traffic to a

certain port, a search from the lists of registered ports is done, the search creates

an overhead which reduces performance(Wang et al., 2019).

Another disadvantage associated with port number classification is that

applications using the same port number may require different QOS

requirements which creates a challenge for using port numbers for QOS(Kumar

et al., 2015). In addition encryption method used may bar the extraction of port

numbers(Wang & Ye, 2018). The demerits associated with port based led to the

development of classification technique based on deep packet

inspection(Alkharasani et al., 2017).

2.18.2 Deep Packet Inspection

To mitigate against the problems associated with port based classification, deep

packet inspection is used. Deep packet inspection use the session layer and

application layer information to make its classification (Zeng & Gu, 2019). DPI

utilizes more than just packet headers and port numbers to classify

packets(Mamman & Hanapi, 2017). DPI uses a number of techniques to classify

traffic including scanning for specific strings in the packets. DPI analyzes only

few packets for each flow to make classification decision. However this

79

introduces processing overhead and it largely depends on the precision of the

DPI systems in use(Wu et al., 2017). On the other hand this approach prevents

a situation where all the bandwidth hungry applications are blocked of which

some may be useful in the network(He et al., 2017).

The port based approach and deep packet inspection are used to classify peer to

peer applications and for intrusion detection(Wang & Ye, 2018). Packets that

have the same port and the same source and destination address are put on the

same class. Deep packet inspection is unable to classify encrypted packets.

However, it may leak the privacy of the data in some way(Wang et al., 2019).

2.18.3 Statistical Signature Based Classification

In statistical signature based classification protocol, fingerprint values such as

packet length and the duration between packet arrival time are used for traffic

classification(Kumar, 2014). The packet length and inter arrival time in

statistical signature based classification are used to establish the behavior

protocols as compared to other classification techniques that are used to

establish the behavior of application that generates the packets (Zeng & Gu,

2019).

2.18.4 IP Address Based Classification

The network type influences the method used for differentiating between traffic

classes and providing differentiated services for each class. In IP address based

traffic classification, traffic is put into classes based on source and destination

address (Fang et al., 2019). There are several parameters which can be

configured by the administrator, however, based on integrated services

80

philosophy, the administrator simply defines, specifies and groups services into

classes or levels which will have different treatment. Selected configurations

are saved and retrieved to and from a database and scripts are generated and

executed internally and transparently(Mary & Jayapriya, 2019). In each of the

interfaces, traffic is classified based on the services and classes defined for that

interface. For each defined service, an IP tables rule is introduced, to classify

and to mark all traffic that follows the pattern identifying that service(Kulkarni,

2015).

All services grouped in the same class are marked with the same specific

number. This number will be used by traffic conditioning module to give

packets from each class different treatment(Hwang, 2019). Concerning traffic

conditioning, a Class-Based-Queuing (Hierarchical Token Bucket queuing

discipline) packet scheduler is used because its hierarchical approach is

appropriate for setups where a static amount of bandwidth is shared among

different users with the option of stipulating the amount of bandwidth that can

be borrowed(Yang, Liu, Ranjan, Shih, & Lin, 2013).

2.19 QOS for Storage Area Networks

The following sections have reviewed some of the solutions for implementing

QOS in IP SANs. Included in the review is their strengths and weaknesses from

which the features of the proposed solution are derived.

2.19.1 Stonehenge

Quality of service is essential in mixed environment where various users with

different levels of priorities and preferences are accessing the storage systems

81

simultaneously(Ghezzi et al., 2019). It is critical to guarantee that critical tasks

get satisfying performance given limited resources. Lan (2005) developed

Stonehenge to solve the issues of storage scalability, manageability and quality

of service. Stonehenge is built on IP networks IDE hard drives, IDE controllers

and off-the shelf low end personal computers(Han et al., 2019). To implement

QOS Stonehenge dedicates a set of storage servers to manage disk arrays and

single personal computers to perform the controlling functions such as storage

reservation and run-time management (Lan, 2005).

2.19.2 PClock

PClock was developed by Ajay, Arifmerchant and Peter(2013) which uses

packets onset curves to indicate bandwidth and burst requirements of

applications(Shen et al., 2017). When implemented PClock exhibited efficiency

in performance isolation as well as burst handling. It also is able to allocate

spare capacity to the applications needing it in order to speed up

communications to the applications. When a request arrives the PClock

algorithm performs three functions; updating the number of tokens, checking

and adjusting tags and computing the tags(Yu, Guo, Liu, Zheng, & Zong, 2018).

The update number of tokens function updates the arrival upper bound function

for the present arrival time while the check adjust tags is used to resynchronize

flows to avoid starvation and the compute tags assigns start and finish tags. The

PClock algorithm allows multiple workloads to share storage, with each

workload receiving the level of service it requires(Fahad, Alharthi, Tari,

82

Almalawi, & Khalil, 2019). PClock allows each workload to specify its

throughput, burst size and desired latency (Ajay, Arifmerchant & peter, 2013).

The PClock algorithm is as follows:

Packets arrival

1. Request arrival:

2. Let t be arrival time of request r from fi;

3. Update Numtokens();

4. CheckandAdjustTags();

5. ComputeTags();

Packets scheduling

1. Request scheduling:

2. Choose the request w with minimum finish tag fj
w and dispatch to the server

3. Let the selected request belong to flow fk with start tag sw
k;

4. Minsk=sk; (Ajay, Arifmerchant & peter, 2013).

In order to assign tags the arrival upper bound function Ui
a() to the current time

t. It maintains a variable numtokens for each flow fi.

PClock guarantees that the well behaved flows are not missed and the requests

of the background jobs are done in batches, which can lead to better disk

utilization since many background jobs tend to be sequential(Shen et al., 2017).

The algorithm is able to redistribute spare capacity to workloads and

background jobs that need it. The algorithm is also lightweight to implement

and efficient to execute. However it does not offer control of how QOS

mechanisms interact with storage devices (Ajay, Arifmerchant & peter, 2013).

83

2.19.3 Argon

The argon storage server ensures management of the inter service disk as well

as caches to ensure efficiency (Xiaoyan Huang et al., 2017). The argon

algorithm aims at providing each traffic flow with a fraction throughput

associated with the flow when it has the server to itself. Argon implements

routinely configured prefetch/write back sizes to protect streaming efficiency

from disk seeks caused by competing workloads. Argon uses prefetching and

write back aggregation as a tool for performance insulation (Matthew et al.,

2007).

Argon adapts, extends and applies some existing mechanisms to provide

performance isolation for pooled storage servers. Many operating systems such

as eclipse operating system use time slicing of disk head time to achieve

performance insulation. Argon goes beyond this approach by automatically

determining the lengths of time slices required and by adding appropriate and

automatically configured cache partitioning and prefetch/write back (Matthew

et al., 2007).

Argon uses QOS aware disk scheduler in place of strict time slicing, for

workloads whose access patterns would not interfere when combined.to

implement fairness or weighted fair sharing between workloads argon uses

amortization cache partitioning and quanta based scheduling(Zuberek &

Strzeciwilk, 2018). Argon assumes that network bandwidth and CPU time has

no effect on efficiency. To achieve complete isolation argon does not allow

requests from different workloads to be mixed, instead it uses a strict quanta

84

based scheduling. This ensures that each client gets exclusive access to the disk

during a scheduling quantum which avoids starvation because active client’s

quanta are scheduled in a round robin manner (Matthew et al.., 2007).

Traditional disk and cache management allow interference among services

access patterns to significantly reduce efficiency(Gémieux et al., 2018). Argon

combines and automatically configures prefetch/write back cache partitioning

and quanta based disk time scheduling to provide each service with a

configurable fraction of efficiency it would receive without competition. This

increases both efficiency and predictability when services share storage server

(Matthew et al.., 2007).

However as with all other storage specific solutions Argon runs on the storage

device itself which requires multiple instances of it to be implemented in all the

devices(Lumb et al., 2003). This increases overhead and CPU time. Again since

there is no centralized management of QOS when the storage data is in transit

from the source to destination QOS is not taken care of(Lichtblau & Streibelt,

2017). The argon design also assumes that bandwidth is not a factor in QOS

however with IP SANs bandwidth management is very important since the

storage data will be moving from source to destination via IP network (Bjorgeen

& Haugerud, 2010).

2.19.4 Facade

Christopher, Arif and Guillermo (2003) developed Façade as a dynamic storage

controller for controlling multiple input/output streams going to a shared storage

device and to ensure that each of the input/output streams receives a

85

performance specified by its service level objective. Façade provides

performance guarantees in highly volatile scenario. To achieve QOS Façade is

implemented as a virtual store controller that is placed between hosts and

storage devices in the network, and throttles individual input/output requests

from multiple clients so that devices do not saturate. Figure 2.12 illustrates the

structure of Facade(Zuberek & Strzeciwilk, 2018).

Figure 2.12: Facade Structure (Source: Christopher, Arif & Guillermo, 2003)

The capacity planner allocates storage for each workload on the storage device

and ensures that the device has adequate capacity and bandwidth to meet the

aggregate demands of the workloads assigned to it(Nam et al., 2004). The

allocation is adjusted depending on the workload. Requests arriving at façade

are queued in per workload input queues. To determine which requests are

admitted to the storage devices façade relies on three components that is the I/O

scheduler, statistics monitor and controller (Christopher, Arif & Guillermo,

2003).

Capacity

planning
Façade

Storage devices

Overload alarm

I/Os

SLO storage allocation

Allocate

stores

86

The I/O scheduler maintains a target queue depth value and per workload

latency target which it tries to meet using earliest deadline first (EDF)

scheduling(Jamaluddin, 2019). The deadline for a request from a workload WK

is arrival Time (WK) + latenctTarget (Wk), where arrival Time (WK) is its arrival

Time and latency Target (WK) is a target supplied for WK by the controller.

Requests are admitted into the devices in two cases; if the device queue depth

is now less than the current queue length target or if the deadline for any

workload is already past(Lim et al., 2017). The intent of controlling queue

depth is to allow workloads with low latency requirements to satisfy their SLOs

(Christopher, Arif & Guillermo, 2003).

The Façade statistics monitor receives I/O arrivals and completions(Sheltami,

2019). It reports the completions to the I/O scheduler and also computes the

average latency and read and write request arrival rates for active workloads

every P seconds and reports them to the controller (Christopher, Arif &

Guillermo, 2003).

The controller adjusts the target workload latencies and the target device queue

length(Chin et al., 2018).Target workload latencies must be adjusted because

the workload request rates vary and therefore it is necessary to give those

requests a different latency based on the workload SLO. The device queue

depth must also be adjusted to meet the varying workload requirements(Gu et

al., 2018).The controller tries to keep the queue as full as possible to enhance

device utilization. However this surges the latency. This means when any

Workload demands a low latency, the controller reduces the target queue

87

depth(Xiaoyan Huang et al., 2017). The controller uses the I/O statistics it

receives from the monitor every P seconds to compute a new latency target

based on the SLO for each workload as follows;

Let the SLO for WK be ((r, tr1, tw1), (r2, tr2, tw2),…,(rn,trn,twn)) with a window

w and the fraction of reads reported is as illustrated by equations 2.6 and 2.7.

Let r0=0, rn+1=∞, trn+1=twn+1=∞ 2.6

Then latency Target (WK) =trifn+twi (1-fr) 2.7

If ri-1<=read Rate (WK) + write Rate (WK) <ri .

Facade is able to efficiently utilize resources and balance the load among

multiple backend devices while satisfying the performance requirement of

many different client applications(Lumb et al., 2003). Facade is also able to

adopt to workloads whose performance requirements change overtime.

However façade cannot handle large workloads. This is because multiple

instance of façade that are in every storage device cannot be able to cooperate

in order to handle large workloads (Christopher, Arif & Guillermo, 2003).

2.19.5 Proportional Allocation of Resources for Distributed Storage

Access (PARDA)

Proportional Allocation of Resources for Distributed Storage Access is a

mechanism that ensures proportional share fairness between distributed hosts

accessing a storage array without assuming any support from the array

itself(Gulati & Waldspurger,2014). PARDA uses latency measurements to

88

detect overload and adjust issue queue lengths to provide fairness(Gulati &

Waldspurger,2014). Many algorithms used for network QOS have been

suggested, including many variations of the fair queuing technique(Lopez-

martin et al., 2017). However these approaches are appropriate only in

integrated setting where a one controller serves all requests for resources(Gulati

& Waldspurger,2014).

The PARDA algorithm uses mean IO latency calculated over a defined period

to detect overload and adapts the hosts issue queue (i.e. window size) length in

response. Each host executes a different copy of the PARDA algorithm(Wang

& Ye, 2018). The PARDA algorithm consists of two mechanisms that is latency

estimation and window size calculation (Ajay, Irfan & Carl, 2014).

Latency estimation is derived from an exponentially-weighted moving average

of IO latency at time denoted by L (t) which is maintained by each host. L (t) is

used to smooth out short term variations. The weight is ascertained by

smoothing parameter αϵ[0,1]. For a new latency observation equation 2.13 is

used;

𝐿(𝑡) = (1 − α) X 𝑙 + α X 𝐿(𝑡 − 1) 2.8

The window size is calculated as in equation 2.14

𝑤(𝑡 + 1) = (1 − 𝛶)𝑤(𝑡 − 1) + 𝛶(
ℒ

L(t)
+ 𝛽 2.9

From the above w(t) refers to the window size at time t, 𝛶ϵ[0,1] is the smoothing

parameter, while ℒ denotes system wide latency threshold and 𝛽 represents IO

allocation shares per host(Alkharasani et al., 2017).

89

When the average latency L >ℒ, PARDA increases the window size. To prevent

extreme behavior from the control algorithm w (t) is bounded by [Wmin, Wmax].

The lower bound Wmin ensures that no host experience starvation due to very

few IO shares. The upper bound Wmax reduces the chances of having very long

queues reducing the latency experienced by hosts that begin issuing requests

after a long period of inactivity(Martins & Zucch, 2019). A fair upper bound is

derived based on queue length values as well as array configuration and number

of hosts.

The latency threshold ℒ represents the acceptable response time and the control

algorithm seeks to keep the overall cluster latency near to this value(Wang &

Wang, 2013).Tests done by Ajay et al...,2014 confirmed that increasing the

length of the queue beyond a certain point does not increase throughput. This

means that ℒ can be configured to a value which is high enough to ensure that

a high number of requests is maintained at the array(Nunome, 2014).

Alternatively administrators can specify ℒ based on requirements such as

support for latency sensitive applications.

The parameter 𝛽 is configured considering the IO shares associated with the

host. Ajay et al.., (2014) highlighted the two properties of the control equation

based on formal model of proofs of FAST TCP. When the throughput

equilibrium for host 𝑖 is proportional to
𝛽𝑖

qi
,where 𝛽𝑖 represents the per host

share parameter and qi is the queuing delay experienced by the host(Hwang,

2019). For a particular array with the capacity of C and latency threshold ℒ the

window size at equilibrium is given by equation 2.15.

90

𝑤𝑖 = 𝛽𝑖 + 𝛽𝑖
𝑪ℒ

∑⍱j𝛽𝑗
 2.10

To improve overall IO performance the scheduler implements borrowing of the

IO shares from those which are not consuming their full allocation. In addition

the scheduler does not switch the VMs after every IOs per VM as long as they

demonstrate some spatial locality(Ou, Hwang, Chen, & Wang, 2015).Table 2.5

illustrates the summary of features contained in each of the discussed solutions

as well as the features of the proposed solution.

Table 2.5: Comparison of Storage Specific QOS Solutions

SOLUTION Burst

handling

Performance

isolation

Bandwidth

Sharing

Centralized

Management

of QOS.

STONEHENGE Absent Present Absent Absent

PCLOCK Present Present Present Absent

ARGON Absent Present Absent Absent

FACADE Absent Present Present Absent

PARDA Present Present Present Absent

PROPOSED

SOLUTION

Present Present Present Present

2.20 QOS Optimization Theories

The following sections discusses the main theories used in the optimization

design of performance isolation, bandwidth management and burst handling.

2.20.1 Theory of Effective Bandwidth

One of the main characteristic of IPSANs is that there is a mixture of traffic

originating from different classes of users. Since most of the flows consist of

variable bit rate (VBR), this means the bandwidth requirements fluctuates from

some minimal level to a peak rate subject to the total bandwidth

available(Hirose & Cappellaro, 2018). If bandwidth is assigned based on the

91

peak rate, then there is a chance of bandwidth wastage as a given class of users

may not send flows equal to the peak rate always. On the other hand if

bandwidth is assigned based on the mean rate, then the SLO of a given class of

users may be violated as occasionally it will be sending at peak rate. The issue

is to determine the effective amount of bandwidth a certain class of users gets

without violating their SLO(Bassi et al., 2020).

The theory of effective bandwidth states that, the effective bandwidth of a time

varying source is the minimum amount of bandwidth required to satisfy its

QOS. The effective bandwidth theory answers the question of how much

bandwidth of a given channel should be available for a given class of user to

provide the required level of QOS(Berger & Whitt, 1998).

The problem of bandwidth management and burst handling optimization was

addressed by the theory of effective bandwidth. When employing the effective

bandwidth theory an appropriate bandwidth is allocated to a class of user and

the class of user is treated as if it requires this effective bandwidth throughout

the session. The feasibility of this effective bandwidth is determined the

constraint that the sum of all effective bandwidths is less than or equal to the

total bandwidth available(Rajan, Mesfin, & Sando, 2020).

Let xi be the effective bandwidth assigned to a class i. Let I be the number of

classes. Let 𝐵𝑅𝑊
𝑇 be the total bandwidth available in the link. A bandwidth

management scheme is said to be feasible if equation 1 holds

∑ 𝑥𝑖≤𝐵𝑅𝑊
𝑇

𝐼

𝑖=1

92

Given three classes of users the following pair constraints apply.

𝑥1+𝑥2+𝑥3 ≤ 𝐵𝑅𝑊
𝑇 and

𝑥1,𝑥2, 𝑥3 > 0

The first constraint denotes that all the allocations for all the classes should be

less than or equal to the total bandwidth available. Whereas constraint two

denotes that all the allocations of bandwidth for each class of user are positive.

Since the needs of users in the network keep on changing, priority is introduced

in order to determine an appropriate share of effective bandwidth. Theory of

effective bandwidth was used for optimization design of bandwidth

management and burst handling.

2.20.2 Computational Complexity Theory

The computational complexity theory states that; For a given deterministic

Turing machine M and a given input x of length n the time 𝑇 (𝑥)𝑀 on that input

is the number of computations M makes on input x before its halts(Gómez,

2020).

𝑇 (𝑛)𝑀 = Max
|𝑥|≤𝑛

𝑇 (𝑥)𝑀 2.11

From equation 2.16, the efficiency of an algorithm can be captured by a function

T from the set of natural numbers n to itself such that T(n) is equal to the

maximum number of basic operations that the algorithm performs on inputs of

length n in time T(x)(Rashelbach, Rottenstreich, & Silberstein, 2020).

Computational complexity theory is used when solving computational

problems(Zheng et al., 2021). A computational problem is a mathematical

expression that can be solved using an algorithm with finite number of

steps(Akbar, Yektakhah, Xu, & Sarabandi, 2021). Computational complexity is

93

the cost of a computation in terms of time and space is dependent on the input

size as well as the computational resources(Consolini, Locatelli, Minari, Nagy,

& Vajk, 2019). This means that the input size and the computational resource

demands defines the complexity of a problem(Jurkiewicz, Biernacka, Domzal,

& Wojcik, 2021).

Packet classification is a core feature in IP networks. Devices such as routers

use a set of rules to determine which action should be taken for a given packet.

Metadata such as source address, destination address, source port, destination

port are used as features of packet classification(Jurkiewicz et al., 2021).

Packet classification is the process of associating packets to a given class.

Packet classification performance affect overall process of performance

isolation(Alkharasani et al., 2017). This makes the performance of packet

classification core to overall system performance when doing packet

classification. This makes packet classification performance of interest to QOS

implementation(Fang, Rao, Liu, & Zhao, 2021). It becomes difficult to scale the

number of rules and the number of matching fields as well as reducing the time

complexity(Nam et al., 2020).

The performance Isolation design used theory of computational complexity for

the optimization design to significantly reduce the valueMax
|𝑥|≤𝑛

𝑇 (𝑥)𝑀 when doing

performance isolation.

2.21 Performance Isolation

To implement performance isolation a classifier is used. Linux classifiers are

used to allocate a packet to a given class of a qdisc (queuing discipline) during

94

the queuing operation. A qdisc is a packet queuing algorithm that makes

decisions on when and which packet to forward. A classful qdisc organizes

traffic in the form of a tree like structure based on their classes. In Linux traffic

classification can be done either using iptables or filters. When a packet arrives,

its filters are matched to the classes until it reaches a leaf class then the packets

are enqueued (Keller, 2006). When an incoming packet enters a root class it

matches filters at the root class first. If filters match the ones at the root class it

is assigned the root class otherwise the matching continues until the appropriate

class is found(Sun et al., 2020). Packets filtering continues down a tree of

classes and not upward. The tc(Traffic Control) feature of the Linux kernel

provides many classifiers some of which are discussed in the following

sections(Brown, 2006).

2.21.1 The Flower Classifier

The tc flower classifier defines a mechanism for classifying packets using a flow

key. The flow key is extracted using a Linux flow dissector and includes

information extracted from the packet header or the packet meta data(Salim,

2015). After the flow key is populated it is compared with rules present in the

classifier and if a match is found actions associated with the rule are executed.

On the matching side the fw (Flower classifier) includes static matching on

packet fields and Meta data while on the action side it provides actions

supported which include either output or drop without any modification of

packet fields and metadata. The Linux kernel implements fw filter both in

software and hardware(Border, 2018).

95

When used in conjunction with the tc command the fw classifier is able to

specify a rich collection of filters. In its inception the fw classifier was a 14 tuple

packet classifier. However during its launching it was redesigned to use the

kernel flow cache. The flow cache is built when the packet traverses from one

layer to another of the network stack(Salim, 2015). As the packet traverses the

network stack a cache is built and it can be reused by other layers of the network

stack. For classification fw uses the following tuples that is the source and

destination MAC address, the source and destination address and the source and

destination port numbers. In addition the fw uses the netdev port for egress

traffic classification(Salim, 2015).

Figure 2.13: The Flower Classifier Operation(Salim, 2015)

The filters are stored in the hash tables where they are used for look ups. As

Figure 2.13 illustrates when a packet arrives in the fw classification system it

establishes if the packet has the cache populated(Salim, 2015). If not the fw

Flow

cached?

No

Yes

Build a

flow cache

Check

flow in

rhashtable

96

create a cache by calling all the existing subsystems to populate their flow

caches. On the other hand if the cache is already present the fw uses the cache

fields as lookups and if a match is found the corresponding action is

exercised(Almesberger & Ica, 1999).

 2.21.2 Berkeley Packet Filter

Berkeley Packet Filter (BPF) is the defacto filter in the UNIX variants. It incurs

a lot of latency in handling both static and dynamic filtering tasks. This is

because a filter update in BPF has to undergo the compilation phase, security

checking phase and user kernel copying(Gulder & Déziel, 2017). In the

compilation phase the human readable filter program is converted into BPF

machine code program. In the kernel coping phase the BPF program is copied

into the kernel. Lastly in the security checking phase the BPF program is

scrutinized to ensure that it does not contain dangerous operations such as

backward branches. All these phases induces a latency that may range from

milliseconds to seconds depending on the number of filters(Salim, 2015).

Berkeley packet filter (BPF) was extended for use in Linux by replacing ports

with sockets hooks and implementing branching. In its original form BPF

included a binary choice of either if a packet matched certain filters it is either

admitted or dropped, BPF is implemented in the Linux kernel to filter packets.

When filtering packets BPF filters directly onto the memory space in the NIC

therefore not requiring additional memory(Salim, 2015). As a result all the time

spent by the BPF system is spent on interpreting the byte code for each filter.

This results in performance degradation once the number of filters to be

processed gets large. To prevent performance degradation a number of

97

techniques are employed, firstly is limiting the program size to 4096

instructions. Limiting the program size is good for speed however it end up

limiting the functionality of the program. The second technique is to eliminate

loops by ensuring that have positive offsets which ensures that the program will

terminate. Lastly is the use of just in time compilation to reduce latency caused

by interpreting byte code for each incoming packet(Brown, 2006). Figure 2.14

illustrates how the BPF is used for classification.

Figure 2.14: BPF usage overview(Salim, 2015).

2.21.3 Iptables Packet Filtering

Nefilter is a framework within the Linux kernel that provides a way for

classification of packets using Iptables. Iptables is a kernel module which is part

of netfilter which consists of a set of commands and tables containing rules that

are used for classifying packets(Salim & Bates, 2016). Using netfilter a systems

administrator is able to create Iptables hook functions that are used to filter

packets as they pass through the networking stack. Iptables defines a table

system on the user space where the system administrator defines chain of rules

Load

rules and

compare 1

Load

rules and

compare
0

-1

!-1&&!0

0

-1

98

for transforming and filtering packets. When classifying a packet the chain of

rules are searched sequentially trying to match each packet.

Iptables has built in tables, namely NAT, Mangle and filter tables for storing

chain of rules (Nedunchezhian & Vijayakumar, 2016). The chain of rules are

classified as;

i) INPUT

ii) PREROUTING

iii) OUTPUT

iv) FORWARD and

v) POSTROUTING.

The filter table consists of FORWARD, INPUT AND OUTPUT chains which

are used for filtering functions. All the rules in the IPtables consist of a set of

matches and the corresponding actions. The chain of rules are processed in a

sequential order that is the order in which they were added(Keller, 2006). If a

given rule is satisfied then the corresponding action is returned and the search

is stopped otherwise the process continues until a match is found. By any chance

no match is found the default action is executed(Baidya, Chen, & Levorato,

2018).

Rules are deleted or inserted into the rules table using the IPtool. A rule is

inserted as line of code that consists of the matching criteria as well as the

associated action.

To use another table other than the default table, the specification should be

done at the point at which the table command is specified (Keller, 2006).

However, that may not in all cases be necessary since IPtables uses the default

99

filter table to implement all necessary commands. Commands for operations

like insert, delete or add a rule are put at the end of the chain in which are used

to instruct the program on what to do. The portion of the rule which is necessary

for classification is sent to the Linux kernel. These portion of the rule includes

details for matching the packet which may include port number, IP address,

network interface, protocol and any other details necessary for classifying the

packet(Baidya et al., 2018). The NAT table is used for Network Address

Translation and all packets only pass through this table once. The first packet in

a stream of packets is checked for matching rules and all the actions applied to

the first packet in a stream is applied to all other packets that follow the first

packet. This makes the NAT table not suitable for packet filtering(Salim, 2015).

The PREROUTING, OUTPUT and POSTROUTING chain are used for altering

packets as they are processed by the firewall. The PREROUTUNG chain is used

to alter all incoming packets as they enter the firewall. On the other hand the

OUTPUT chain is used to alter those packets locally generated by the firewall.

Finally the POSTROUTING chain is used to modify packets that are about to

exit the firewall. The mangle table is used to modify/mangle header information

of the packets. The content changed by the mangle table include the MARK or

TOS and the TTL. Mangling of incoming packets is done by PREROUTING

chain while mangling of outgoing packets after the routing decision is done by

the POSTROUTNG chain. OUTPUT chain is used to mangle the locally

generated packets before routing decision is made. The INPUT chain is used to

mangle packets before they reach the user space application(Balan, Potorac, &

Graur, 2015).

100

After packets have gone through a series of routing decisions before the last

routing decision the FORWARD chain is used to mangle the packets. After

the packets goes through the firewall it is passed to the kernel space(Gulder &

Déziel, 2017).

 2.21.4 RSVP & RSVP6 classifiers

The Resource Reservation Protocol (RSVP) is used to classify IPV4 address

based traffic while RSVP6 is used for IPv6. The RSVP classifies packet based

on RSVP requests using source and destination IP addresses and port numbers.

In speciation of IP addresses the destination address must be specified as exact

while the source can be optional(Border, 2018).

2.21.5 Traffic Control Index Classifier

The Traffic Control index (tcindex) classifier is used together with the dsmark

qdisc. In order to classify traffic the dmask retrieves a value from the tcindex

that is used to classify packets. The value obtained can be used in whole or part

of it to find a filter that can be matched to a certain handle used to classify

traffic(Brown, 2006).

The process of defining a key for matching a filter handle is as indicated in

equation 2.6:

key = (skb¡ > tc_index&mask) >> shift 2.12

The mask parameter indicates which bits of the of skb->tc_index are to be used

for matching. The shift indicates the number of bits returned by the bitwise

AND should be shifted to the right(Keller, 2006). When a match is found the

classifier returns the ID of the corresponding class defined by the classid

parameter. In case where no match is found the key specified in the parameter

101

fall_through is used as the class ID. Otherwise the process returns not found

and the search proceeds to the subsequent classifier(Gulder & Déziel, 2017).

2.21.6 Routing Table Based Classifier

The routing based classifier is used to classify packets based on the routing

table. The router based classifier is used in conjunction with the tc and the IP

utility of the iproute2. The classifier uses a combination of either the mask and

destination address or the source address and the mask in its definition for

classification. In addition an IP real must be defined(Keller, 2006).

For each realm a filter for destination or a source realm is specified. Each filter

is designed to match to an ingress interface(Brown, 2006).

2.21.7 U32 Classifier

The U32 (Universal 32 bit) classifier filter is one of the most popular filter

available in the current Linux implementation. The U32 filter is based on the

hashing tables which gives it robustness when filtering rules are many. In its

simplest implementation the U32 filter is composed of a list of records, each of

which has an action and a selector(Salim & Bates, 2016). When a packet is

being processed the IP packet is compared with the selectors configured until a

match is found then the relevant action is performed. An example of an action

is putting the packet into a predefined class. In the tc filter command line filters

are configured using a filter specification, a selector and an action. Filters are

specified as follows

tc filter add dev IF [protocol PROTO] [(preference|priority) PRIO] [parent

CBQ] (Salim, 2015)

The protocol value defines the protocol to which the filter will be applied to.

For this study it is the IP protocol(Gulder & Déziel, 2017). The preference or

102

protocol field specifies the priority of the currently configured filter. This is vital

since there could be many filters with varied priorities(Almutairi, Stahl, &

Bramer, 2021). The list of filters is passed in the order in which they were added

however the filters are processed based on priority with the higher priority rules

processed first(Salim, 2015).

The U32 selector contains the pattern to be matched to the packet. In particular

it specifies the bits in the packet header that that are to be matched. With the

U32 filter these bits may include those of IP address, Port number or the

protocol. The following example illustrates how the configuration of selectors

is done(Gulder & Déziel, 2017).

tc filter add dev eth0 protocol ip parent 1:0 pref 10 u32 \match u32 00100000

00ff0000 at 0 flowid 1:10

From the above example the selector line is the one that contains the match

keyword. The example will match exactly the 00ff which is the match mask. In

this case the 0xff will match exactly 0x10. The at keyword specifies where the

matching criteria will start in this particular case at the beginning of the packet.

In the U32 implementation it is possible to use either the general selectors or

specific selectors (Salim, 2015).

General selectors consists of three parts that is the mask, pattern and offset

.Using the general selector matches can be made to any single bit in the header

of the packet. The general selector are more difficult to read and configure

compared to the specific selectors(Brown, 2006). The syntax of the general

selector is:

103

match [u32 | u16 | u8] PATTERN MASK [at OFFSET | nexthdr+OFFSET]

The values u32, u16 or u8 specifies the length in bits that the pattern and

mask should have. The offset defines is where the matching will begin.

However when the nexthdr+ keyword is specified the matching will start at

the upper layer header(Border, 2018).

The specific selectors can be found in the Linux tc (Traffic Control) program

source code. The general selector makes code easy to understand and easy to

read.

tc filter add dev ppp0 parent 1:0 prio 10 u32 \match ip tos 0x10 0xff \ flowid

1:4

The rule illustrated above will be able to match packets with a TOS filed as

0x10. With the U32 filter the specific rules are eventually translated to general

ones whereby they are stored in the kernel memory. In addition it is important

to specify the protocol since the UDP and TCP selectors are the same(Brown,

2006).

2.22 Limitations of Linear Search Based Classifiers

In section 2.19, much of the classifiers employ linear search algorithm leading

to various limitations. Table 2.6 illustrates a list of rules for a typical linear

search based classifier policy and is followed by the probable limitations which

are likely to occur.

104

Table 2.6: Example of a Sequential Rule List Policy

Rule Destination

IP address

Destination

Port

Source IP

address

Source

port

Protocol Action

R1 192.168.1.3 3260 192.168.2.4 ANY ISCSI Read

R2 192.168.1.4 3260 192.168.2.4 ANY ISCSI Read

R3 192.168.1.2 3260 192.168.2.4 ANY ISCSI Read

R4 192.168.1.5 3260 192.168.2.4 ANY ISCSI Read

R5 192.168.2.4 3260 192.168.1.3 ANY ISCSI Write

R6 192.168.1.3 3260 192.168.2.4 ANY ISCSI Read

R7 192.168.2.4 3260 192.168.1.5 ANY ISCSI Write

R8 192.168.1.1 3260 192.168.2.4 ANY ISCSI Read

R9 192.168.2.4 3260 192.168.1.1 ANY ISCSI Write

R10 192.168.1.2 3260 192.168.2.4 ANY ISCSI Read

R11 192.168.1.2 3260 192.168.2.4 ANY ISCSI Read

R12 192.168.1.3 3260 192.168.2.4 ANY ISCSI Read

R13 192.168.1.4 3260 192.168.2.4 ANY ISCSI Read

R14 192.168.1.2 3260 192.168.2.4 ANY ISCSI Write

R15 192.168.1.3 3260 192.168.2.4 ANY ISCSI Read

R16 192.168.1.5 3260 192.168.2.4 ANY ISCSI Read

R17 192.168.2.4 3260 192.168.1.4 ANY ISCSI Write

R18 192.168.1.5 3260 192.168.2.4 ANY ISCSI Read

.

.

R325 Any Any Any ANY Drop

2.22.1 Shadowed Rule Limitation

A shadowed is a rule that won’t get to match since a rule preceding it will have

matched all its packets(Cherian, 2016). For instance, in Table 2.6 R12 is

105

shadowed by R1. Shadowed rules may bring about speed problems as well as

security issues. Security issue would arise if a rule implementing security would

be shadowed by another rule(Dahan, Hindi, et al., 2021). For example if we are

to deny entry to certain malicious packet by use of a particular rule, if this rule

is shadowed by another rule above it, security would be breached

(Nedunchezhian & Vijayakumar, 2016).

In addition shadowed rules may result in reduced performance of a classifier

since the shadowed rules waste the packet classifiers processing time(Paricio &

Lopez-Carmona, 2021). Shadowed rules therefore can be deleted without

changing the classification policy(He, Chomsiri, Nanda, & Tan, 2013b).

 2.22.2 Swapping Position between Rules Limitation

Swapping rules can change the classification policy if the swapped rules result

in putting packets in different classes and they can be able to match the same

packet. Changing the packet action would alter the accuracy of the classifier(He,

Chomsiri, Nanda, & Tan, 2013). In Table 2.6 swapping R325 with any other

rule would result in a different action.

2.22.3 Redundant Rules Limitation

A redundant rule is one that has been implied by another one below it(He et al.,

2013). In Table 2.6 R14 is redundant to R10.Redundant rules result in reduction

in the speed of processing packets which waste classifiers processing

time(Acharya et al., 2006).

2.22.4 Bigger Rule Problem

A big rule is one that matches all packets. In Table 2.6 R325 is the bigger rule.

In other words the default rule. If bigger rule is placed before other rules it

106

shadows them(Pu Wang, Yan, Wang, & Zeng, 2022). This brings about a design

problem since the rules position is of significant importance(Zhao, Inoue, &

Yamamoto, 2004). This also brings about speed problems since a packet that

can only match the bigger rule has to go through all other rules before it reaches

the bigger rule which is usually the last(Suresh, 2016).

2.22.5 Sequential Computation Limitation

In a listed firewall the computation for packet classification is sequential which

brings about speed problems when rules are many(Acharya, Member, Znati, &

Member, 2008). The time required for packet classification will increase with

an increase in the number of rules. For example the average number of rules

that would be matched to a packet in a classifier of N rules is N/2 and the time

required is O (N)(Cherian, 2016).

2.23 Performance Isolation Optimization

Since the study is using packet classification optimization for performance

isolation optimization, the research therefore reviews various approaches for

packet classification optimization. Vasu and Ganesh(2014) proposed a

technique for reordering packets based on the current network statistics. The

technique further subdivides the packets into P partitions to reduce the search

time(Shirvani Moghaddam & Moghaddam, 2022). The window size is used at

store the history of the traffic pattern. A quantity match ratio is then calculated

based on the values of the window size and it is this match ration that is used to

reorder firewall rules. Through experiments this technique has been proven by

Vasu and Ganesh (2014) to be effective in implementing firewalls rules. To

107

improve on this solution by Vasu and Ganesh (2014) the study partitioned the

rules instead of the traffic to reduce the match time since the overhead incurred

on segmenting packets which is more than that of segmenting rules. This

follows from the fact that even in a medium sized organization the network

could generate millions of packets unlike number of rules which could be far

much less (Acharya et al., 2008).

Hamed and Al-shaer (2006) proposed a technique for optimizing firewall

filtering rules by calculating the traffic statistics then using the results to

dynamically reorder firewall rules. When implemented the solution proved to

be simple and light weight. However its early rejection property may cause

more packets to be dropped which would be detrimental to overall QOS

especially for storage area networks(Sun & Cho, 2022).

El-Atawy, Samak, Al-Shaer, and Hong (2016) proposed two methods that is

segment based tree search and segment based list search. The segment based

tree search uses Huffman trees and traffic characteristics for each segment to

reduce the search time. However the technique was proven to have a lot of

overhead especially when it comes to maintaining the tree. To eliminate this

overheard El-Atawy, Samak, Al-Shaer, and Hong (2016) used the segment

based list search which included a most recently used list which is placed at the

top of the classification rule list to reduce the search time. However Ganesh,

Sudarsan, Vasu, Ramalingam, and Nadu(2014) observed that this method is

more useful when the traffic is steady.

 Trabelsi and Zeidan(2012) proposed a method which rejects packets early and

also accepts packets as early as possible. The early acceptance is achieved with

108

the use of splay trees decisions which are updated using the history of the traffic

characteristics. For rejection a multilevel approach for filtering packets is used

before the decision for rejection is made. This is done in an attempt to ensure

that users are not denied service (Ganesh et al., 2014).

Named and Al-Shaer(2006) used a branch and bound technique to resolve the

optimal rule ordering problem by ensuring that the minimum number of rules

are matched to the packets as well as maintaining the relationship among the

rules. However Vasu and Ganesh(2014) observe that the proposed approach by

Named and Al-Shaer(2006) has linear space complexity and the resulting time

complexity was proven to be polynomial.

To enforce performance isolation traffic needs to be classified and resources

bound to the classes of traffic. Classification refers to the association of packets

to classes based on the packet header information(Nam, Choi, Yoo, Eom, &

Son, 2020). However all the previous solutions discussed assume that the

classification process does not affect overall performance of the storage area

network during the performance isolation process. This is not true given that all

the performance isolation techniques discussed use throttling techniques in

order to achieve performance isolation. To apply throttling all packet flows need

to be differentiated in terms of importance. In other words they need to be

classified.

The study embarked on proving that the classification process if not optimized

could lead to performance degradation of a storage area network in attempts to

achieve performances isolation. The study used throttling of workloads from

initiators based on the resources required. For throttling to happen it is necessary

109

to have classified traffic. Since experiments are done on the Linux platform the

study uses classifiers available in the Linux platform. The tc command of the

Linux kernel already contains a classifier action subsystem. These includes the

flower classifier, Berkeley packet filter, IPtables, RSVP and RSVP6 classifier,

Traffic control index classifier, routing table classifier and Universal 32 bit

classifier (Almesberger & Ica, 1999).

Amongst all the classifiers available in Linux the study settled on the U32

classifier for two main reasons. One is that the U32 classifier can use any bit

patterns in the packet header for classification(Salim, 2015). Secondly in Linux

classifier performance benchmarking experiment performed by Salim and Bates

(2016) proved that the U32 is the best in terms of performance.

However the traditional implementation of U32 packet classifier does look up

for rules in a sequential manner until a match is found. Rules are distinct entries

in a classifier for putting packets into classes(Gulder & Déziel, 2017). This

implies that the delay incurred in finding a match for a specific rule is

proportional to the size of the rule list. While this may not be a big deal when

the rule list is small, when there are many rule lists it may cause performance

degradation of the system due to increased delays (Barzegaran, Cervin, & Pop,

2020). Again since packet filtering entails more processing load than routing,

the filtering process becomes more complex as rules increases(Almesberger &

Ica, 1999). In addition classifiers must be able to handle more packets as

transmission media speeds increases otherwise the classier may result in delays

during packet processing(Baidya et al., 2018). Other Problems associated with

sequential rule lists include shadowed rules, possibility of swapping of rules,

110

redundant rules and the design complexity brought about by the bigger rule

problem(Chomsiri, He, & Nanda, 2012). A shadowed rule is one that won’t get

to match any packets because the rules above it have already matched the

packets it should have matched(Blenk, Kellerer, & Schmid, 2019). Shadowed

rules results in speed and security problems. Swapping rules involves changing

the rules position. In some cases swapping of rules may result in changes in the

classification policy. A bigger rule is a rule that shadows all the rules in the

classification policy. It takes a lot of experience from system administrators to

determine the position of bigger rules(Suresh, 2016).

In order to optimize performance when implementing isolation the study

optimized the classification technique employed. Therefore the focus of this

chapter is to optimize the U32 classifier for optimization of performance during

isolation flows belonging to particular classes. The study uses the techniques of

reordering classification rules, splitting the rules and building a tree rule

structure for the classifier optimal performance. To achieve performances

isolation the proposed approach binds resources to the classes generated and

then using experiments demonstrates that the proposed performance isolation

solution with an optimized classifier performs better than that without an

optimized classifier. Metrics used to measure optimization of proposed systems

include latency, throughput and accuracy (Chomsiri et al., 2012).

2.24 Bandwidth Management for QOS

Bandwidth in computer networking is defined as the data rate supported by a

network connection and is expressed in bits per second (Alkharasani et al.,

2017). The term is derived from electrical engineering where it represents the

111

distance between the highest and lowest signals on the communication

channel(Wang, & Member, 2017).

In a network, there is a combination different categories of traffic that have

different requirements based on the application they are using (Celik, Radaydeh,

& Member, 2017). Although in the recent years the available bandwidth has

increased it is still one of the major causes of bottlenecks in communication

networks if not managed(He et al.., 2017). Therefore making the utilization of

bandwidth to be efficient is still one of the key aspects that promote network

performance. The management of bandwidth begins at the network planning

and design stage and in the long run through a variety of techniques based on

the various layers of the TCP/IP model.

The TCP/IP protocol suite defines the manner in which nodes communicate

over the internet. The TCP part is responsible for segmentation and reassembly

of packets while the IP part is responsible for transmitting packets(Ravali,

2019). The TCP/IP protocol suite is made up five layers namely physical layer,

data link layer, network layer, transport layer and application layer (Bora, Singh,

& Arsalan, 2019). Each upper layer is supported by lower layer protocols.

TCP/IP is designed to be flexible and can be extended to meet various

requirements as long as service interfaces to the layers remain intact(Chinmay,

2019). It offers a networking model and offers a generic means to separate

computer networking functions such as bandwidth management into multiple

layers(Ravali, 2015). Some methods for managing bandwidth based on the

layers of TCP/IP model are addressed in the following sections.

112

2.25 Layer One and Two Bandwidth Management

At layer one of the TCP/IP model bandwidth management can be achieved by

installing the appropriate transmission media and networking equipment (Lim

et al., 2017).To achieve higher bandwidth additional hardware is installed(Wu

et al., 2017). The layer two of the TCP/IP model is responsible for delivery of

frames. In this layer frames contend for access to shared link and therefore

bandwidth management at this layer aims at managing contention for the

available link (Alkharasani et al., 2017). At layer two there are several

techniques used for reducing contention for bandwidth include network

segmentation, employing full duplex links and prioritizing frames(Celik et al.,

2017).

 Network segmentation is division of the network into smaller components.

Network segmentation implemented using bridges, where the network is

divided into many segments joined by bridges. This has the cost implications of

buying new hubs and bridges(Lim et al., 2017). Network segmentation can also

be done using the network interface card. This is where each segment on the

network is connected to a different NIC on the server. This means the servers

will be required to route between NICs (Song, 2018).

2.26 Layer Three Bandwidth Management

At layer three the main focus of bandwidth management is to eliminate

congestion by use of routers which control rate at which packets are sent into

the network. Congestion occurs when the traffic traversing the network exceeds

the capacity of the network, and needs to be managed to prevent degradation of

QOS(Xu, 2018). If not managed congestion wastes whatever bandwidth is

113

available and degrades the QOS in a network. The TCP/IP model network layer

is responsible for assignment of IP address to hosts in the network. Bandwidth

management at the network layer occurs in real time as the packets arrive(Wu

et al., 2017). And there after applying static or dynamic bandwidth

allocations(Randrianantenaina & Member, 2017). Techniques for managing

bandwidth at layer three are addressed in the following sections.

 2.26.1 Upgrading Cables and Ethernet Hubs

To increase the bandwidth, the shielded twisted pair can easily be replaced by

fibre optic cable for faster speeds(Lim et al., 2017).On the other hand Replacing

100 Mbits/sec Ethernet network interface cards (NICs) with gigabit Ethernet

increases bandwidth considerably(Mamman & Hanapi, 2017). This solution

entails the purchase and installation of cabling. Besides the cost, other key

areas of improvement include ,managerial overhead where external connections

require managerial time and effort(Randrianantenaina & Member, 2017).

2.26.2 Network Segmentation and Full Duplex Ethernet

Network segmentation using switches is done by replacing hubs with switches.

Since each port in a switch represents a collision domain, adding a switch breaks

the network into small collision domains(Wu et al., 2017). The creation of small

collision using switches is known as micro segmentation. Micro segmentation

comes with many benefits including low latency, support for virtual Local area

networks (VLANs) and prioritization. In addition it is less costly as compared

to layer one cost of installing cables(Xu, 2018).

Full duplex Ethernet technique is able to increase the bandwidth of a connection

up to twice its capacity(Wang, Sun, & Cao, 2018). When a dedicated full duplex

114

connection is used it further eliminates contention for the link. However to

achieve full duplex Ethernet NICs must be able to support duplex mode.

Therefore full duplex Ethernet requires NICs replacement and reconfiguration

of the client and server software’s(Wang, 2018).

2.26.3 Bandwidth Allocation, Sharing and Reservation

A network is made up of the users who need bandwidth to meet their service

demands(Paul, Tachibana, & Hasegawa, 2016). However, in a realistic network,

bandwidth is limited and some methods of allocating it are needed when total

demand is greater than the resource limit. Therefore bandwidth management is

required to ensure proper utilization of the existing bandwidth. Bandwidth

management includes the techniques of bandwidth allocation, bandwidth

sharing and bandwidth reservation

 Bandwidth allocation is about efficiently allocating the network bandwidth

among the sources(Randrianantenaina & Member, 2017). Static bandwidth

allocation technique assigns a maximum amount of bandwidth to each class and

implements traffic shaping to control the data traffic(Garg & Dixit, 2021).

Classes are not restricted to use less than their bandwidth allocations however a

class is limited to use more than its allocated bandwidth(Song, 2018). Dynamic

bandwidth allocation techniques is an alternative that enables network resources

to be adjusted in order to improve network utilization(Ji & Member, 2018).

When a certain class of users require more bandwidth than that it is reserved

for, a review is initiated to ask for more. If the allocated bandwidth to a class is

more than enough, some of the bandwidth can be shared(Mamman & Hanapi,

2017). In this way bandwidth usage can be improved significantly. In dynamic

115

bandwidth allocation various classes of algorithms are used. One such class of

algorithm is based on parameter measures. In this case a parameter is calculated

up to the current period and in future bandwidth is allocated based on the

previous history of usage(Paul et al., 2016).

In a bandwidth sharing method, traffic is divided into classes and each class is

allocated a percentage of the bandwidth(Xu, 2018). When given classes reach

its limit, no more data belonging to that class can be forwarded. However if all

other classes are not utilizing their whole share, a class can borrow bandwidth

for a short while and send its traffic(Randrianantenaina & Member, 2017).

Bandwidth reservation is a technique where a certain data flow is allocated a

specific amount of bandwidth for guaranteed QOS. The reservation protocol

enables one to reserve special QOS for their data(Wang et al., 2018). When an

application receives data packets for which it requires a certain QOS it sends a

RSVP request back to the sending application(Sboui et al., 2019). As the data

traverses the network, the QOS is negotiated with the routers and other network

devices. Those network equipment’s that do not contain the RSVP functionality

simply ignores the RSVP traffic and do not participate in the negotiation(Song,

2018).

2.26.4 Load Shedding and Buffer Allocation

Load shedding also referred to as packet dropping is a function performed by

the router when it cannot handle all incoming packets(Mamman & Hanapi,

2017). On this case the packets may be dropped based on a certain priority.

However priority schemes are challenging to implement owing to the fact

116

negotiation from all users is required(Salomo, Pratama, Choi, & Member,

2018).

The dropping of excess packets has been proven not to be effective since it

would require differentiation between data packets and acknowledgment

packets. For example dropping TCP acknowledgment packets would delay the

allocation of buffers and hence cause congestion(He et al., 2017).

In buffer allocation technique buffers are allocated in routers. If by any chance

congestion occurs, the packets can be temporarily stored in the pre allocated

buffers to be transmitted later(Kourtessis, Lim, Merayo, Yang, & Senior, 2019).

In this way congestion is reduced because the stored packets are no longer in

transit(Marir, Wang, Li, & Jia, 2018).

2.26.5 Flow Control Using Choke Packets and VLANs

Flow control using choke packets reduces congestion by ensuring that the router

is not overwhelmed by many packets by transmitting a choke packet to the

source. A choke packet is a packet sent to the transmitter by the receiver

indicating there is congestion and the receiver should reduce the rate of sending

packets. In response the source reduces the amount of packets sent(Xiaohong

Huang, Yuan, & Ma, 2018). To increase the speed of transmission for choke

packets, they are sent to intermediate routers in which case the response

becomes fast. The internet control message protocol is responsible for sending

choke packets(Lim et al., 2017).

Flow control targets at shaping traffic from source to destination while in

congestion control aims at regulating the traffic flow in the network(Mamman

& Hanapi, 2017). Flow control reduces network throughput due to increased

117

packet transit time which makes it an effective bandwidth management

technique. Flow control is only effective if it manages to decrease the quantity

of traffic in a link at critical points and time(Randrianantenaina & Member,

2017).

Virtual LANS are defined in IEEE standard 802.1Q. The IEEE 802.1Q is a

standard that implements VLANs in an Ethernet network. IEEE 802.1q defines

a system for tagging Ethernet frames and the mechanism to be used by

networking devices to handle VLAN frames. VLANS allows for users to be

grouped together irrespective of their physical locations. VLANS create a

smaller broadcast domains which in turn reduces bandwidth consumed by

broadcasts. In this way more bandwidth is availed to users(Ji & Member, 2018).

2.27 Layer Four Bandwidth Management

At layer four bandwidth is managed by not only controlling the amount of

connections, but also regulating the packets flow amongst the hosts. At layer

four bandwidth management can be achieved through limiting the amount of

end to end connections and controlling the flow of packets amongst two

hosts(Lim et al., 2017). In this case bandwidth management is achieved using

Transmission Control Protocol Rate Control and rate control resource

reservation protocol(Liu, Li, Xu, & Li, 2021).

Sliding window is a TCP features that is used to reduce congestion by regulating

the amount to packets that can be transmitted by a given host.

Acknowledgements are used to communicate to the transmitting host to

continue transmitting otherwise the transmitting host stops

transmitting(Sovandara, April, & Penh, 2015). TCP sliding window can be

118

adjusted dynamically in responses to any flow timeouts in the network by

shaping traffic, TCP rate control makes it smoother and more

predictable(Alkharasani et al., 2017).

The resource reservation protocol (RSVP) method is used to optimize

bandwidth by monitoring and controlling bandwidth along each link between

sender and receiver(Gémieux et al., 2018). The RSVP reserves bandwidth

between a sender and receiver monitoring each connection and route(Xu,

2018). Before information is sent, the receiver establishes whether each device

along the route has spare bandwidth available, if not the transmitting device is

informed(Jamaluddin, 2019).

2.28 Layer Five Bandwidth Management (Application layer)

The emergence of many web applications has led to the demand for application

level QOS in many network setups. The high contention for bandwidth may

lead to bandwidth sensitive applications not working properly(Kulkarni, 2015).

At the application layer bandwidth management is achieved using variety of

QOS tools. This tools are used to provide priority to traffic based on application

type so as to ensure bandwidth intensive applications do not crowd the

network(Chang et al., 2017). This solution provides a predefined classification

of protocols based on applications and an all-inclusive policies for traffic control

such as rate shaping and priority marking(Yong et al., 2015).This makes it

possible for network administrators to distinguish between desirable and

undesirable traffic flows within the same protocol. Application layer bandwidth

management is supported for all application matches, custom application rules

and file transfer types(Cos, 2012).

119

Traffic generated by applications in a network is classified as either constant

bit rate (CBR) or variable bit rate (VBR)(Mahajan & Mahajan, 2015). The CBR

applications produce traffic flows at a constant rate and therefore can be

allocated a given amount of bandwidth to achieve intended QOS. This implies

that allocating more bandwidth does not improve user satisfaction(Nahrstedt,

Arefin, & Rivas, 2011). VBR applications produce varied traffic flows and are

able to utilize all the available bandwidth. For VBR traffic the more the

bandwidth the better the QOS(Randrianantenaina & Member, 2017).

At the application layer port blocking and bandwidth caps are the two most

popular techniques for implementing bandwidth management. Blocking can be

done for only ports associated with P2P applications in an attempt to improve

network performance(Huang, Yuan, & Ephremides, 2019). However blocking

ports as a method of managing bandwidth has a number of drawbacks. First is

that P2P applications such as bit torrents allow users to choose the port before

the start of a download(Xu, 2018). Using Bandwidth Caps technique is applied

to discourage users from consuming huge amounts of bandwidth(Jamaluddin,

2019). Bandwidth caps is effective in bandwidth savings but cannot effectively

manage congestion during peak hours(Ali & Chen, 2019). Additionally, this

technique lacks the granularity to differentiate traffic. This technique can be

improved by applying caps to certain applications at certain times of the

day(Eramo, 2019).

2.29 Dynamic Bandwidth Management Algorithms

Dynamic bandwidth management involves the assignment of bandwidth based

on network changes. The two main algorithms used in dynamic bandwidth

120

management include Hierarchical token bucket and per connection queue

(PCQ). PCQ does not offer prioritization and therefore not much has been

studied about it in this study, in contrast HTB offers prioritization and

implementation in Linux traffic control (Siregar, Fadli, & Hizriadi, 2020a) .

HTB falls into the category of class based queuing disciplines (Iswadi, Adriman,

& Munadi, 2019). A queuing discipline is a mechanism for queuing and

dequeueing packets under the influence of an algorithms(Mathews, Kramer, &

Gotzhein, 2018). HTB operates between the IP layer and the mac layer(Iswadi,

2019). In HTB flows are structured in a hierarchy of classes namely root, inner

and leaf classes(Bosk, Gaji, Schwarzmann, Lange, & Zinner, 2021). All traffic

goes through the root classes which is situated at the top(Qian et al., 2017). Inner

classes are below the root classes with child classes as leaf classes. The leaf

classes have no child classes however they have parent classes(Iswadi,

Adriman, & Munadi, 2019). Flows control in each class is achieved by an

internal token bucket which is populated with tokens limited by the rate a

particular class is permitted to transmit(Sarmah, 2019).When a packet is

transmitted belonging to a particular class its bucket is subtracted with the

number equal to the rate(Lee & Kim, 2013).

Each class is configured with two rates that is rate bucket with tokens and a ceil

bucket which contains ctokens (ceil tokens)(Ren, Feng, & Dou, 2017). Tokens

and ctokens is a measure of the amount of time a class occupies the scheduler

output line. During transmission a class could either be in green, yellow or red

states(Siregar, Fadli, & Hizriadi, 2020). In the green state the class has sent less

121

data than its allocated rate and therefore it can send more(Aljoby, Wang, Fu, &

Ma, 2018). In the yellow state the class has exceeded its guarantees rate but not

ceil rate. In the red rate the class has sent more the ceil and cannot send any

data.

HTB uses DRR (Deficit Round Robin) algorithm for scheduling in which the

class deficit is decremented based on the size of the packet(Aljoby et al., 2018)..

Ctokens decrease by a ratio equal to
𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑎𝑡𝑒
. This is the amount time a

packet is in the scheduler queue. Ctokens is added to the time elapsed after

transmission to take into account the time that elapsed since the last

transmission in the same queue ctokens. The following example is used to

explain this concept further. Let 𝑡2 be the current time and 𝑡1be the last time

since the last transmission(Garroppo et al., 2019).

ctokens(𝑡2) = 𝑐𝑡𝑜𝑘𝑒𝑛𝑠(𝑡2) + (𝑡2 − 𝑡1) −
𝑝𝑎𝑐𝑘𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑎𝑡𝑒
 2.13

Given that C is the capacity of the network in bps, any rate assigned to class

r<C. Therefore
𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑎𝑡𝑒
>

𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝐶
. 2.14

Equation 2.7 and 2.8 shows that when there is consecutive transmission from

the same class the tokens constantly decrease (Ren et al., 2017). This is because

the transmission is done at rate r therefore the value of t2-t1 is added to the C

pool which is equal to packet length /r which is less than

packetlenght/rate(Garroppo et al., 2019).

122

If the expiration of the deficient for the current green class expires the scheduler

might switch to the next green class. This is the case due to the working of DRR

algorithm which is used in HTB as a scheduling algorithm. Scheduling

algorithms are algorithms that determine the order in which packets are

processed(Iswadi et al., 2019). The DRR scheduling algorithm decrements the

deficit after every transmission and in some cases it becomes zero or negative.

In the mentioned cases 1/10 of rate is added to the deficit by default and then

the scheduler can switch to the next green class if any. If there are no green

classes the current one will continue to send until it is red or other become

green(Lee & Kim, 2013)

Another case is when there is a bucket underflow(Ren, 2017). Bucket underflow

is when ctokens bucket becomes empty which is an indication to the scheduler

that the class is exceeding its ceil and therefore should switch to the next class.

Ctokens takes the values in the interval [-cburst, cburst] where cburst is the peak

rate(Siregar et al., 2020).

When cbusrt is negative an underflow happens and the class status becomes red.

On the other hand if ctokens goes above cbusrt the excess ctokesn are discarded.

Since underflow has got a high priority the deficit expiration if the underflow

occurs the class stops sending data without putting into consideration the deficit.

However if the deficit expires and other classes are red, the current transmitting

class continues to send by adding a quantum value to deficit. It is important to

configure a high cburst to ensure all the classes are green so as to allow

transmission of all bytes from the current class before switching to the next

123

one(Ren, 2017). When a class has reached it’s ceil rate it queues packets until

new tokens are available in a process known as policing. The working of the

HTB is summarized in Figure 2.15.

Figure 2.15: Functioning of HTB (Source: Bosk et al., 2021).

The key strength of HTB is bandwidth borrowing which ensures maximum

utilization of the available bandwidth. Configurations for bandwidth borrowing

is based on priority, high priority classes can borrow more bandwidth(Sarmah,

2019).In HTB each class is configured with allowed rate(R), burst rate(BR)

,Guaranteed rate(GR) and rate that the class can borrow(BW).Therefore for any

class i, in HTB a definition of its allowed rate(R) can be calculated as indicated

in equation 2.9(Lee & Kim, 2013).

𝑅𝑖 = min(𝐵𝑅𝑖,𝐺𝑅𝑖 + 𝐵𝑊𝑖) 2.15

Each class is configured with priority p and a quantum. Leaf classes borrow

bandwidth from their parents. If a leaf class has no parent then BW=0.For any

class i with parent p and quantum i and priority p then the following equation

holds(Iswadi et al., 2019).

124

𝐵𝑊𝑖 = {
𝑄𝑖𝑅𝑝

∑ 𝑄𝑖 𝑤ℎ𝑒𝑟𝑒 𝑝𝑗=𝑝𝑖
𝑗∈𝐷

 𝑖𝑓 min 𝑗 ∈ 𝐷(𝑝) 𝑝𝑖 ≥ 𝑝𝑖} 2.16

With equation 2.10 it is possible to ascertain that rate is borrowed from parent

and decided among all descendants levels based on priority according to

quantum 𝑄𝑖(Lee & Kim, 2013)

HTB cannot alone provide fairness and utilization, since it relies on prediction

of output capacity of a link. We therefore need to include the current network

statistics. Commercial routers do not provide optimization of bandwidth sharing

for QOS by dynamically assigning bandwidth based on priority and network

conditions (Ren et al., 2017).We propose the traffic aware HTB for QOS

provisioning based on priority(Lee & Kim, 2013).The proposed solution has

been analyzed with a series of systematic experiments. The experiments we

have verified that the proposed QHTB offers optimized bandwidth utilization

and low latencies.

2.30 Burst Handling for QOS

One of the objectives of QOS is to regulate traffic injected into a (Wang, Xu,

Chen, Sun, & Zhang, 2018). Traffic is said to be bursty if the data flow rate

deviates sharply in short periods of time. The rates may jump from a peak of

12Mb/s for example to an average rate of 2 Mb/s and vice versa as illustrated in

Figure 2.16(a). Bursty traffic is very difficult to handle since its behavior in

unpredictable due to the differences between peak rate and average rate.

125

Figure 2.16:Bursty traffic handling for QOS with (a) Showing Bursty Traffic, and

(b) Shaped Traffic(Source:Lichtblau & Streibelt, 2017)

To take care bursty of traffic, traffic shaping is required to regulate access to the

available bandwidth. Traffic shaping is meant to avoid congestion and reduce

delay that may arise due to contention for the available bandwidth (Aduragbemi,

2018). Traffic shaping is meant to regulate traffic at a constant rate as illustrated

in Figure 2.16(b). Leaky bucket and token bucket algorithms are most popular

traffic shaping solutions(Zuberek & Strzeciwilk, 2018).

2.30.1 Leaky-Bucket Traffic Shaping

The leaky bucket algorithm shapes traffic by transforming a turbulent traffic

flow into a smooth traffic flow by regulating the amount of traffic that exits an

interface where the algorithm is configured as illustrated in Figure 2.17 (Khalid

& Hashim, 2014). A leaky-bucket interface is placed between the source of

traffic and the network(Chang, Wu, & Lin, 2018). Traffic is regulated to flow

into the network in the same manner flow of water would in a leaking bucket.

Leaky bucket has the advantage of being easy to implement(Amjad, 2019).

126

Figure 2.17:Leaky Bucket Algorithm(Source: Zuberek & Strzeciwilk, 2018).

At the core of the leaky bucket algorithm is a finite queue to which packets are

admitted depending on the capacity of the interface buffer. Packets that find the

buffer full are discarded (Zuberek & Strzeciwilk, 2018). The amount of traffic

that flows from the interface demonstrates how much traffic a given interface

can handle and this is communicated to the source to determine how much

traffic the source should transmit (Zhou, Yan, Berger, & Ruepp, 2018). In this

way leaky bucket algorithm regulates the amount of traffic that enters a given

network(Salomo et al., 2018).

In the Leakey bucket algorithm implementations packets are classified as either

fixed sized packets or variable size packets. Variable size packets are

transmitted at each for each clock tick while for fixed size packets ,a fixed

amounts of packets are transmitted at a particular time(Wang et al., 2018). The

Leaky bucket algorithm is suitable for networks where we have variable number

of packets as well as fixed number of packets(Amjad, 2019). However the leaky

bucket algorithm does not put into account idle time for example if a host is not

Full?
N

Arrival

Discard Y

Release packets at a

constant rate

127

sending its bucket remains empty and by any chance a host experiences

congestion only its average rate is transmitted(Zuberek & Strzeciwilk, 2018).

2.30.2 Token Bucket Algorithm

In the token bucket algorithm tokens are used to regulate traffic. A token refers

to the permission to transmit one bit of data by a host in the network(Khalid &

Hashim, 2014). Tokens are spawned at a frequency of one token per unit time

and stored in a queue of finite size(Xiaoge Huang, Cao, Li, & Chen, 2020).

When the token pool is full, any additional token generated are discarded. The

token bucket algorithm takes into account idle time where any host that has

experienced idle time accumulates its share of tokens which can be used during

congestion(Truong-huu, Member, Gurusamy, & Member, 2017). Token bucket

algorithm is efficient in environments where the amount of packets to be

transmitted is equal to the amount of tokens. Functioning of token bucket

algorithm is as illustrated in Figure 2.18(Lichtblau & Streibelt, 2017).

Figure 2.18:Token Bucket Algorithm(Source: Zuberek & Strzeciwilk, 2018).

Full?
N

Discar

d
Y

Arrival

One token is removed

and discarded per

packet transmitted

128

2.30.3 Combining Token Bucket and Leaky Bucket

The Token bucket and leaky bucket can be combined in order to ensure idle

hosts are compensated for their idle periods as well as regulate traffic(Khan,

Member, & Alam, 2022). In the combined implementations, the leaky bucket is

implemented as the first and token bucket follows as the second. For optimal

performance the number of tokens out of the bucket need to be greater than the

number of tokens entering the bucket(Lichtblau & Streibelt, 2017).

2.31 Optimization of Bandwidth Management and Burst Handling

 Guo(2005) found that QOS in SANS has been researched for years such as

façade, chameleon, triage and Stonehenge. Facade uses the technique of

throttling I/O requests to the storage to achieve the required SLO. However

façade earliest deadline is not effective when we have burst workloads(Kim,

Kwon, Lee, & Song, 2021). Chameleon leaky bucket is not efficient since it is

not work conserving because it reserves bandwidth to support each client’s

storage QOS requirements sharing of resources proportionally. Solutions such

as YFQ and cello balance user requirements. Stonehenge uses a disc scheduler

to guarantee bandwidth between the storage server and the client(Ramaswamy,

2008).

Lu et al., (2005) looked at the integration of storage QOS and network QOS.

Other solutions mentioned above looked at storage QOS and network QOS

separately. They also proposed a priority based greedy algorithm for allocating

storage server link network bandwidth to clients. Formulated mathematical

models to calculate the required bandwidth. Solution implemented on object

based storage system. Object based storage does not use file system instead it

129

uses object attribute mechanism. The authors implemented a solution to

calculate the needed network bandwidth for clients based on their SLO. Then

they designed a priority based greedy bandwidth allocation to allocate the link

network bandwidth. (Lu et al., 2005).

(Chambliss, Alvarez, Pandey and Jadav, 2003) developed SLED (Service

Level Enforcement Discipline for Storage) which is able to throttle very busty

workloads responsible for performance degradation. SLED is decentralized and

therefore can be used to manage large storage systems. SLED main aim is to

ensure effectiveness of storage systems by directing resources to those flows

that do not have. However this approach may cause poor performance in high

priority classes. In addition SLED is implemented on an FC SAN. Peng and

Varman, 2020) developed pTrans a framework for reservation guarantees based

on directed acyclic graphs. However pTrans was found not to give accurate

estimates for resource demand and available resources during run time which is

crucial for dynamic resource allocation. Peng also developed Bqueue which is

framework for providing reservations and limits or storage systems. However

Bqueue uses a simple round robin scheduler which has an advantage of low

overhead but as determined in literature simple round robin end up causing

delay especially in environments where there are packets of varied sizes and

priorities. Peng and Varman (2018) developed pShift which is a framework for

providing I/O reservations and limits. Pshift uses estimates to provide optimal

token distribution however it was found to be less scalable.

130

Motivated by the above discussion the study implements a scheduler shaper that

achieves better bandwidth utilization and low latencies better than the

conventional solutions available(Micha & Shah, 2020).The study formulates

NUM mathematical model for the optimal utilization of network bandwidth. We

solve this model using the Lagrange multiplier to find the optimal allocation

value for each class of user. The study demonstrates through simulation that the

proposed solution is efficient in the utilization bandwidth and reducing latency.

The study implements the proposed solution on a router positioned between the

initiator and the target where the algorithm runs to avoid multiple copies of the

same algorithm running in the network. This is expected to reduce overhead of

processing multiple copies of the algorithm and eventually increase network

performance.

A major component of providing QOS in a network is the scheduler(Jin, Xia, &

Guan, 2020). Packet schedulers are necessary in providing or ensuring bounded

delay guaranteed bit rate and fair service allocation to all flows(Sanyoto,

Perdana, & Bisono, 2019). This can be achieved by solving the contention

problem of a given resource and deciding on the sequence in which packets are

transmitted from the node(Qian et al., 2017).

The router requires scheduling mechanisms to output packets arriving and

ensure differentiated QOS(Siregar et al., 2020). The selection of an appropriate

scheduling algorithm is key to providing QOS(Huang et al., 2020). A good

scheduling mechanism should avoid unfairness between packets(Mathews &

Glandevadhas, 2020). Low priority packets should not be starved. In addition a

131

good scheduler should provide good utilization constantly adjust the laws of

their operation based on network statistics(Iswadi et al., 2019)

Packet schedulers are classified as either time stamped or frame based(Chin,

2021). Time stamped include the weighted fair queuing, worst case fair queuing,

virtual lock and self-clocked fair queuing(Dong et al., 2019). The advantage of

time stamped scheduling algorithm is that they provide tight latency bounds and

provide good fairness. However they have high complexity(Siregar et al., 2020).

Frame based schedulers operate by rounds. Where each flow is served in a given

round(Lin, Che, Jiang, & Wei, 2019).Weighted round robin, deficit round robin

and elastic round robin are frame based schedulers .These schedulers are easy

to implement, however they have high latencies(Salomo et al., 2018). This study

focuses on DRR which is implemented in HTB.

 DRR services flows in a round robin and succeeds in eliminating the unfairness

of pure packet based round robin. However DRR latency become high when we

have two flows with higher rate than the other. A good scheduling algorithm

should have low computation cost, easy to implement, efficient and good

fairness. DRR has a computation cost of O (1) though it does not have optimal

fairness. This is because a flow continuously sends packets up to an amount of

its deficit quantum which increases delay for smaller packets. Based on the

deficiency of the DRR the study has put forward Hierarchical Priority Dynamic

Deficit Round Robin scheduling algorithm (HPDDRR) technique that integrates

traffic shaping and scheduling. HPDDRR uses a dynamic deficit counter that is

generated based on the current network statistics for a given round. By using a

132

quantum for the highest rate high priority queue ensures high priority traffic is

given preference hence achieving reduced delays. The hierarchy further ensures

that flows are grouped based on classes which prevents interference.

2.32 Integration of QOS Technique

TCP provides best effort which is unsatisfactory for providing QOS to storage

traffic. Providing QOS guarantee require a number of functions to be performed

such as performance isolation, bandwidth management and traffic shaping.

There has been many proposed solutions for providing QOS in IP SANs.

Jaiman et al.(2019) developed Heron which is an algorithm that is aimed at

reducing tail latency when dealing with heterogeneous workloads. Heron does

this by predicting which workloads will require large execution time. To reduce

latency heron ensures that requests requiring small execution time are not

scheduled behind those that require large execution. However this technique

relies on predictions. If the predictions are wrong then resources may be wasted.

Peng et al.(2019) Developed fair-EDF to provide latency guarantees for storage

servers. Results obtained showed that fair-EDF is able to provide fairness for

heterogeneous workloads. However this mechanism was found not to be

scalable. In addition fair-EDF lacks the mechanism to separate workloads with

large execution time from those with small execution time.

Peng et al.(2019) also developed pShift which is a token allocation algorithm

for balancing resources between storage servers. However it was found to have

scalability problems. Peng & Varman (2018) came up with Bqueue which is a

scheduling system that provides QOS reservations and limits. To handle

133

dynamic workloads bandwidth is computed at regular intervals. The problem

with Bqueue was found to be that it uses tokens allocation as the only control

measure for QOS.

Cui et al.,(2019) developed tail cutter as a mechanism for reducing latency in

cloud storage systems. Tailcutter uses parallel request to cloud datacenters to

reduce latency. However it only uses latency as a QOS control measure for

storage. Peng & Varman (2020) Developed pTrans which is a framework for

reservation allocation based on direct graph model. However pTrans is not able

to give accurate estimates for resources available at run time which leads to

inaccurate allocation of resources and wastage. In addition pTrans was found to

increase with workload.

Techniques like PARDA(Gulati & Waldspurger, 2009), Argon(Wachs et al.,

2007) use queue length management and disk time reservation for implementing

proportional throughput fairness as a means for implementing QOS in storage

area networks. Technique such as PriorityMeister(Zhu, Tumanov, Kozuch, &

Ganger, 2017) and Triage(Karlsson, Karamanolis, & Zhu, 2005) use

throughput performance isolation among competing workloads by use I/O

throttling techniques such as Leakey bucket algorithm, deficit round robin and

start-time fair queuing(SFQ) to manage how much throughput competing

workloads receive. Other techniques like mClock (Gulati & Varman, 2007) and

Pisces(Shue, Freedman, & Shaikh, 2012) support throughput QOS using

maximum minimum fairness.

134

On latency there are two categories of techniques used, that is those that

enforce average latency and those that aim at decreasing tail latency.

Techniques that use mean latency SLO for QOS in storage systems include

Facade (Lumb et al., 2003), Triage (Karlsson et al., 2005) and PClock (Gulati

et al.,2007). In contrast the proposed system binds latency to each host based on

its SLO however it dynamically adjusts latency based on the priority of

workloads calculated from the network statistics hit ratios. This ensures optimal

SLO compliance by each class of users.

Other studies like those done in cosTLO(Wu, Yu, & Madhyastha, 2015) and

C3 (Suresh et al., 2015), use redundancy to reduce coverage and tail latencies.

C3(Suresh et al., 2015) reduces tail latency through dynamic redundancy and

distributed rate control.Other techniques such as PriorityMeister (Zhu et

al.,2014) and cake (Vulimiri et al., 2013) cut tail latency with the use of

scheduling. PriorityMeister (Zhu et al.,2014) uses priority base I/O throttling as

well as priority based scheduling for busty workloads.

Previous works reviewed in this research includes techniques only either for

latency support and only those for throughput support. In contract this research

implements an integration of three techniques in an attempt to support

throughput, latency, and jitter for users in IP SANs. To improve on the previous

work this study integrates the three functions of performance isolation,

bandwidth management and burst handling otherwise used separately in the

previous studies. These integration is aimed at increasing throughput, reducing

latency and reducing jitter

135

In addition most of the techniques reviewed in chapter one are either predictive,

static or do not take into consideration the network statistics. Static techniques

are not adaptive and therefore there is a high probability of network congestion.

Predictive techniques have the downside that if the predictions are wrong it

leads to low utilization of network resources. On the other hand decentralized

techniques result in computation overhead where copies of the same algorithm

run in multiple locations.

To further improve on the previous work this study incorporates the features of

dynamism, use of network statistics to prioritize traffic and finally the use of a

centralized mechanism to reduce the overhead experienced when multiple

copies of the same algorithm are run. To measure the performance of the

proposed system in providing QOS the metrics of throughput, latency, and jitter

are used.

2.32.1 IQMIS

The aim of this study was to develop an algorithm integrating and optimizing

bandwidth management, performance isolation and burst handling features. The

main idea was to achieve guaranteed QOS for storage traffic in IP SANs. The

study first looked at performance isolation whose objective was to classify

traffic and allocate dynamically network resources to various classes of traffic

to reduce resource contention, thereby providing guaranteed QOS for storage

traffic. The U32 classifier was used for the purposes of classifying traffic in

order to achieve performance isolation(Hassan et al., 2017).The study came up

136

with enhanced list based packer classifier for performance isolation in IP

SANs(ELPCIS) for the optimization of performance isolation

Bandwidth management and burst handling was implemented using HPDDRR

algorithm an improvement on the existing DRR used in HTB. In order to have

adequate control of the users’ resource consumption, both read and write

requests are throttled (Jiwu & Weimin, 2005). The target outbound commands

translates to the initiators reads. On the other hand the targets incoming data

translates to the initiators writes(Sheltami, 2019). The proposed algorithm was

implemented in a central router that will lie between the initiator and the target

(see Figure 2.19) thus providing centralized management of QOS that is absent

in all other reviewed techniques. Centralized management of QOS is expected

to eliminate any overhead that would have resulted from any attempt to

coordinate separate algorithms running on storage devices as in the case with

the existing solutions. In addition the centralized algorithm was able to maintain

information about network resources and their users and dynamically adapt

regulating values to rapidly changing workloads.

137

Figure 2.19: IQMIS Architecture

2.33 IP Networks Validation

Validation is the process of determining the degree to which a simulation model

and its associated data are accurate representation of the real world form the

perspective of the intended use of the model(Saunders, Lewis, & Thornhill,

2007). In IP networks generally, validation helps in predicting network

performance and also determine if the network works correctly. There are

different scopes of validation. That is the timing of the validation and the

approach of validation(Mikac & Horvatić, 2019). The scope of validation

determines the level to which the validation is done. With scope validation there

are three possibilities, which includes; unit testing, functional testing and

verification(De Sio, Azimi, & Sterpone, 2020). Unit testing is used to test the

correctness of network devices configuration for example Domain Name

service (DNS) configuration. While unit testing is easy to implement it does not

indicate the end to end behavior which is crucial for determining network

138

performance. On the other hand functional testing is used to check end to end

behavior for example if packet reaches its destination. This means that unit

testing can guarantee network behavior(Hashemian, Carlsson, Krishnamurthy,

& Arlitt, 2020). However functional testing does not offer completeness due to

the fact that even though a single packet does not reach the destination the other

packets may reach the destination(Scazzariello, Ariemma, & Caiazzi, 2020).

This is where verification comes in. Verification ensures correctness of all

possible scenarios in the defined scope. It mainly takes the formal mathematical

approach. Since verification offers strong guarantees it offers network managers

and researchers a strong confidence to the performance of a network(Jose-

Ignacio, Serrano-Martinez, & Monica, 2019).

When it comes to timing, validation can be doe either post deployment or pre

deployment. In post deployment, validation checks whether the network set up

has the intended impact(Bonati et al., 2021). In the context of this research the

manipulation of bandwidth and block size was done to check if they have the

intended impact on the results. On the other hand pre deployment validation is

meant to shield the network system from errors that may occur during the

deployment. It is therefore provides a higher degree of protection form errors as

compared to post deployment validation(Xian Zhang & Peng, 2019).

2.33.1 IP Network Validation Approaches

There are four main approaches to IP network validation. That is text analysis,

emulation, operational state analysis and model based analysis. The four

139

approaches as used based on intended purpose. However an integration of two

or more approaches can be used to achieve better results(De Sio et al., 2020).

Text analysis validation is done by scanning network configuration without the

consideration of the semantics. For instance, text analysis can check if the

network device has IP address configured(Hewage, Ahmad, Mallikarachchi,

Barman, & Martini, 2022). Text analysis is not able to determine a network

behavior and therefore considered to be inadequate when considering network

performance. It is mainly used when the other methods are not available(Parks

& Peters, 2022).

Emulation validation employs a test bed with real physical devise or virtual

devices(Bonati et al., 2021). In an emulation validation, a network manager or

researcher can deploy the intended configuration to determine the resulting

network performance(De Sio et al., 2020). Emulations are used when it is

difficult or inconveniencing to build a full replica of the network due to limited

resources or just for research purposes(Scazzariello et al., 2020).

In operational state analysis a network is validated in its production. The key

advantage to this is that validation is done on the actual network. However it

has some disadvantages(Amid et al., 2020). One is that errors are transferred to

the actual network since its post deployment. Secondly it can’t be used to test

for large scale failure scenarios as it would disrupt the entire network(Parks &

Peters, 2022).

Model based analysis validation builds a working model for a working network

behavior(Binder, 2018). It checks the behavior of a network using a range of

140

scenarios. It employs the strategies of simulations and mathematical

models(Cedillo, Insfran, Abrahao, & Vanderdonckt, 2021). Model based

analysis is the only one that can implement verification since it employs

evaluation of more than one scenario(Saha et al., 2020).

The study adopted and integration of text based analysis, emulation and model

based analysis. Text based analysis was used to check for the correct

configurations done during experiment setup. This is important so as to sure all

the initiators read the same block size and that experiments stated and run for

the same period of time. An emulation test best was then setup using virtual

machines as well as physical machines. Virtual machines were used to save on

costs of buying physical machines. Model based analysis was used to test the IP

SANs on different scenarios that is using the block sizes of 4KB, 64KB and

1MB. In addition two scenarios were considered that when using IQMIS and

when using best effort.

141

CHAPTER THREE: METHODOLOGY

3.0 Overview of the Chapter

This chapter presents the research methodology used in this study. The key

activities and their impact on the research are highlighted. The research

philosophies, strategy, approaches and techniques, data collection techniques,

quality control and ethical issues are presented.

3.1 Research Philosophy

This study adopted positivism philosophy. Saunders, Lewis and Thorn hill

(2009) defined research philosophy as what the researcher is doing when

carrying out the research and developing knowledge in a particular field in

relation to how data should be gathered, analyzed and used. The philosophy

used in a particular research informs on the vital assumptions on how the

researcher views the world. The philosophy used in a research is determined by

the practical concerns and the view of the relationship between the existing

knowledge and the procedure of developing new knowledge (Bryman et al.,

2008). Lewis and Thornhill(2009) hold that there are four categories of

philosophies that can be adopted in a research; positivism, interpretivism,

realism and pragmatism. Positivism explores the causal relationship between

variables. It uses lab experiments, mathematical modelling and survey methods

as research designs.

In this research a number of reasons informed the decision to adopt the

positivism research philosophy. First is that the research was bent on the

optimization the techniques of performance isolation, bandwidth management

142

and traffic shaping. In performance isolation the research hypothesized that

without optimization of the classification process it would lead to the

performance degradation of the system. Experiments were setup using the

proposed solution and without the proposed solution and the quantitative results

compared. In bandwidth management and burst handling mathematical models

were formulated and used to estimate the optimal bandwidth for each class of

user based on the hit ratio. The same mathematical models were used to estimate

the optimal quantum for packet scheduling for burst handling. Finally in the

integration of the previously mentioned QOS techniques, the research looked at

the causal relationship between the techniques of performance isolation,

bandwidth management and burst handling on IP SANs QOS. Furthermore the

researcher sees himself as a neutral observer and it is expected that researchers

using the same instrument should reach the same conclusion.

3.2 Research Design

Greener(2008) defines research design as a structured approach of investigation

applied to obtain reliable answers to research questions with regards to research

problem. This section presents the research strategy adopted in the study as well

as the data collection techniques used.

3.2.1 Research Strategy

In this study, an experimental research strategy was adopted. Experimental

research is characterized by more control over the research environment where

variables are manipulated to observe their effect on other variables. Experiment

is a research strategy that involves finding causal relationships between

143

variables through the effect of manipulating one variable on another (Saunders

et al., 2009). It is suitable for phenomenon with known variables or initial

hypothesis that aimed at testing or manipulating a theory (Greener, 2008). It is

also used to test and answer ‘How’ and ‘why’ research questions and lies in the

positivism philosophy domain (Winterton, 2008).

The experimental strategy was used because it provides greater control over the

research environment where bandwidth management, burst handling and

performance isolation was manipulated to observe their effect on IP-SANs QOS

(Sekaran, 2003).The goal of experimental research design is to explain effects

and determine a causal relation between variables. In this study experiments

were set up to determine the effect of bandwidth management, burst handling

and performance isolation on IP-SANs QOS. The purpose of the experiment

was to study causal links between bandwidth management, burst handling and

performance isolation on IP-SANs QOS.

3.2.2 Data Collection and Analysis

To characterize system performance in the course of experiments, a variety of

different tools were be utilized. The most important task is monitoring QOS

performance metrics about the I/O requests transmitted through the system

(Valenzuela, Monleon, Esteban, Portoles, & Sallent, 2003). Parkdale was used

monitor throughput and latency while wireshark was used to monitor hit ratio.

Parkdale is a disk benchmarking tool used to test the performance of storage

device. The decision to use Parkdale as a tool for traffic generation is due to the

fact that it allows for block level access sued in SANs.

144

Wireshark is free open source packet analyzer that was developed by Gerald

Combs in 1998. It is mainly used for network troubleshooting as well as for

research. This study settled on wireshark as a packet analyzer since results can

be refined using a display filter. This was important since the study looked at

the ISCSI protocol which was used as filter. In addition, Wireshark is able to

capture packets from simulation which was the source of data used in the study.

Appendix B depicts the wireshark interface showing the packets generated

using the ISCSI protocol. Traffic configuration Linux command tc –s qdisc dev

eth 0 was used to show class statistics with information under each class. The

data collection was started, stopped, post-processed and collected using

Parkdale and wireshark and tc –s qdisc dev eth 0.

All experiments were run for a period of 200 seconds. Experiments were run

three times and the averages recorded. For performance isolation the number of

rules were varied from 18 rules (best case) and 1152 rules (worst case). For all

the experiments the IO size was varied from 4KB (no congestion), 64KB and

1MB (with congestion). The rules and file sizes were chosen based on what was

found used in literature reviewed so as to provide ground for comparison

purposes between IQMIS and existing solutions. All experiments were setup

with the configurations with the IQMIS and without the proposed solution (Best

Effort).

Since the study generated quantitative data descriptive statistics were used to

analyze data. Using Microsoft excel spreadsheet quantitative data was

145

aggregated and analyzed using descriptive statistics. The results are then

presented in tables accompanied by explanations and discussions.

3.3 Experimental Setup

This section outlines the experimental setup employed during experimental

design. Areas covered include a description of the how network traffic was

generated, performance isolation optimization, bandwidth management

optimization burst handling and the integration of the techniques into an

optimization technique for QOS management on IPSANs. The architectural

layout of the IQMIS is as presented in Figure 3.1.

Figure 3.1: Experimental Setup for IQMIS

However, for purposes of possible replication and clarity of this study, Table

3.1 shows the hardware and software specifications for the experiment set up.

Switch

Initiators

Switch

PC Software Router where

IQMIS was run

Targets

Gigabit Link

146

Table 3.1: Hardware and Software specifications to be used for the

Experiment

Equipment Specification of the Hardware and

Software

Quantity

OS(initiator) Windows 7 4

OS(target) Windows 7 2

OS(router) Ubuntu version 16.0 1

Memory(initiator) 2GB 1

Memory (target) 2GB 1

Memory (router) 2GB 1

Hard disk

(initiator)

500 GB 1

Hard disk (target) 500 GB 1

Hard disk (router) 500GB 1

3.3.1 Traffic Generation

Parkdale was used to simulate read and writes to the storage devices .Attempt

to read or write varied IO sizes by the initiators was used to generate concurrent

workload of a wide-ranging variety. A generated workload can be reproduced

using the same IO size (Paulraj & Kannigadevi, 2019). While the key task of

the Parkdale tool is to produce workloads, it can indicate the speed in which the

read or write operations are being carried out for every I/O request. This is an

additional advantage. In the real implementation of IP-SANs, I/O requests are

generated by applications running on the iSCSI initiator machines (Han et al.,

2019). The initiator is a server that utilizes the storage resource. Appendix C

depicts part of Parkdale interface with the configuration of reading or writing a

file size of 30MB using 64KB block size. From appendix C it is clear that allows

147

for a lot of flexibility choosing the block size as well as the file size. This

allowed for the researcher to be able to manipulate block size so as to make the

intended point. Manipulation of variables is a key strength of experimental

research design which was adopted in this study and choosing of Parkdale as a

tool enabled the exploitation of this key feature of variable manipulation in

experimental research design.

3.3.2 Optimization of Performance Isolation

Classification was done using the U32 classifier available in the Linux kernel

due to its robustness. The study settled on U32 classifier as it is the most robust

in terms of performance compared to the others available. However during the

classification process , U32 classifier searches for rules in a linear order as it

looks for matches for a specific packet(Yakti & Salameh, 2019). However linear

search does not perform well especially when the number of rules increases. To

optimize the performance of the U32 classifier a rearrangement of the rules

based on the hit ration was sought. This sorting was to ensure that those rules

that have a high hit ratio will fall at the top. This is expected to reduce the

number of matches required for packet classification to be done, while

maintaining the reliability of the original classification policy. The reliability is

maintained if the reorganized and original rules constantly produce the same

results. To optimize the classifier further the go statement was used to jump to

rules hence splitting them to sub rules which reduces the time complexity of

the search from O(N) to O(
𝑁

𝑃
) where p is the number of partitions(Hamed & Al-

shaer, 2018). Use of the go to statement was to split the rules to form a

148

hierarchical tree like structure. Using a tree structure to classify traffic further

reduced the number of matches hence improving on the performance. of the

proposed system(Acharya, Znati, & Member, 2008).For performance isolation

optimization design, the study came up with an Enhanced List Based Packet

Classifier for Performance Isolation in Internet Protocol Storage Area

Networks(ELPCIS).

3.3.3 Optimization of Bandwidth Management and Burst Handling

The Hierarchical Token Bucket (HTB) qdisc was used to set up a tree hierarchy

of classes and their bandwidth(Salmani, 2015). Since HTB uses DRR

scheduling mechanism which is known to have high latency and also leads to

low bandwidth utilization of resources especially when there are flows in the

same queue with different rates (Sarmah & Sarma, 2019). The optimization of

bandwidth management and burst handling was meant to eliminate the

weakness of DRR by adding dynamism to the quantum selection based on

network statistics and use of hierarchy of queues instead of FIFO queues which

do not offer prioritization.

The study adopted scheduler/shaper named hierarchical priority based dynamic

deficit round robin (HPDDRR) for optimization of bandwidth management and

burst handling. HPDDRR employs the technique of hierarchy structure of flows

to reduce the number classes’ queues and reduce the processing delay of the

queues. Secondly the study implemented the use of priority calculated from hit

ratio of flows to calculate the deficit quantum which ensures that the quantum

is dynamic based on network statistics. The hierarchical structure allows for

isolation of traffic between flows. In addition so as to retain the complexity of

149

O (1), the hierarchical structure was configured to have one level. The property

of dynamic counter was meant to ensure packets get transmitted as much as

possible in every round robin during DRR as the deficit will be calculated based

on highest rate of the highest priority queue. This improves on best effort static

bandwidth allocation since a class will be allocated bandwidth based on the

current network requirements. The feature of traffic classification further

improves on latency experienced by DRR as packets of similar rates are put in

the same queue which reduces the waiting time which might be high for low

rate packets when mixed with high rate packets.

3.3.4 Integration of Performance Isolation, Bandwidth Management and

Traffic Shaping

In the integration of performance isolation, bandwidth management and burst

handling the study came up with an Integrated QOS Management Technique

for Internet protocol Storage Area Networks (IQMIS). The IQMIS algorithm

incorporating the features of performance isolation, bandwidth management

and burst handling was developed and is as presented in algorithm 6.

The input for the IQMIS is packets and rules for packet forwarding. The

proposed algorithm takes packets as input, puts the packets into classes then

allocate bandwidth to the specified classes. In order to implement traffic

shaping, bandwidth borrowing was configured to ensure bursty packets are

able to use extra bandwidth(Yakti & Salameh, 2019). If no unused bandwidth

is available a class will transmit its committed rate waiting for any unused

bandwidth. By ensuring no particular class uses more than its share of resources

provides QOS guarantees (Hemke et al., 2019). The algorithm was run in a

150

central software router which sits at the core of the network. Centralizing the

management of QOS was implemented to remove the overhead of having

individual algorithms running in all the storage devices as observed in the

reviewed solutions, therefore centralization of the management of QOS did

contribute to the improvement of the overall system performance(Inumula,

2015).

3.3.5 Validation of the IQMIS

In order to facilitate validation IQMIS its features were prototyped. The IQMIS

was designed and implemented as a shell script. Simulation experiments were

set up to evaluate the designed algorithm on QOS metrics as defined by the ITU

(see tables 2.2, 2.3 and 2.4).That is the metrics of latency, throughput and jitter.

The experiment setup equipment’s was as illustrated in Figure 3.1. The router

was put at the middle where the IQMIS was run. Simulation of packets from the

initiator to the target was done to test the performance of the algorithm against

the QOS metrics. The major benefits of a simulation-based evaluation are that

it is scalable, repeatable, and the network conditions can be controlled(Saunders

et al., 2009). Experimental tests were carried out incorporating the IQMIS and

in other instances not incorporating the IQMIS that is best effort. This was be

done to determine the corresponding changes in the IP SAN performance when

IQMIS was used and when not used.

3.4 Quality Control

The following sections looks at how quality control was ensured. It includes a

discussion of how validation of tools used was done. It further outlines how the

reliability test was carried out.

151

3.4.1 Validity

According to Kothari C.R, (2004) validity is the most important criteria for

indicating the degree to which a measuring instrument measures what it is

supposed to measure.in other words it is the extent to which a test or experiment

provides an accurate representation of its real equivalent(Surucu & Maslakci,

2020). A valid simulation is the precise depiction of the simulated task within

the perspective of research objective. There are two types of validity that are

used in simulation design experiments. That is face validity and construct

validity(Guido-Sanz et al., 2022).

Face validity is the personal view of how realistic a particular simulation is.

Face validity is dependent on the observed features of the simulation as well as

the functional and structural aspects(Thi & Nha, 2021). Consequently the

technical design of the simulation is a key determinant of face validity. In

subjecting the tools to validation, the process started by discussion with the

supervisors of the study who scrutinized all the tools to assess their

appropriateness in addressing critical issues in the study (Greener, 2008).

 A simulation can have a face validity at the same time irrelevant as it could

have no correlation with actual performance of an experiment. Face validity is

assessed by the user’s feedback about how good is it a representation of the real

task. Consequently face validity is not clearly tested and may not be a vital

contributor to the experimental success(Hehman, Calanchini, Flake, & Leitner,

2019).

152

Construct validity is more objective than face validity as it determines the

degree to which a simulation provides a precise representation of the real world

environment. A simulation with good construct validity should be sensitive to

variations in performance as the variables are manipulated(Coleman, 2022).

Predictive validity which is related to construct validity is concerned with how

the simulation accurately predicts prospective real world performance.in the

study construct validity was used as it looks at how close the proposed system

achieves close results from what is in theory.

Validity was established through testing IQMIS and Best Effort where the

experimental results were checked against the objectives.

3.4.2 Reliability

Test-retest technique of reliability testing was employed whereby experiments

were done repeatedly to allow for reliability testing (Sekaran, 2003). To ensure

reliability of the data collection tools, each measurement was conducted at-least

thrice and where the variance was large, the results were nullified until a

consistent result was obtained.

3.5 Review of Objectives

Table 3.2 presents a summary of the objectives of the study and how they were

addressed in the study.

153

Table 3.2: Summary of Objectives

Objective Question Data

Source

Method Analysis

i. To analyze

techniques for

providing QOS for

IP networks.

i. How are the

techniques used to

provide QOS in IP

networks?

Literature Systematic

structured

literature

review

approach

Content

Analysis

ii. To

Optimize QOS

techniques for

performance

isolation,

bandwidth

management and

burst handling for

QOS in IP SANS.

ii. How can the

performance

isolation, bandwidth

management and

burst handling QOS

techniques be

optimized for

providing QOS

management for IP

SANs?

Simulation

Experiments

Simulation

Experiments

Metric

Analysis

iii. To develop

an integrated QOS

management

technique for IP-

SANs.

iii. How can

integrated QOS

management be

developed using

performance

isolation, bandwidth

management and

burst handling?

Simulation

Experiments

Prototyping

Metric

Analysis

iv. To Validate the

integrated

technique for

providing QOS

management in IP-

SANs.

i. How valid is

the developed

technique for

managing

QOS in IP

SANs

Simulation

Experiments

Simulation

Experiments

Metric

analysis

154

3.6 Ethical Considerations

The experiments was set up in the Meru University computer laboratories

therefore permission to carry out the research was granted by the university.

Since the study did not entail dealing with sensitive human data, no special

authorizations was required. However, the National Commission for Science,

Technology and Innovation (NACOSTI) research permit was obtained.

Appendix A depicts the research permit. In addition approval from the

directorate of post graduate studies of Meru University of Science and

Technology.

3.7 Summary

This chapter has described the methodological procedures that were used to

answer the research question posed in chapter one of this study. Justification

has been offered explaining the reasons for selecting the research philosophy,

research design. Data collection methods are discussed and relevant issues

relating to the study's reliability and validity were presented. Similarly, a review

of the objectives of the study were presented in this chapter. The remaining

chapters of this thesis will thus seek to present the detailed results that met each

of the objectives presented, chapter four presents performance isolation

optimization, chapter five presents optimization of bandwidth management and

burst handling and chapter six which presents the overall integrated technique

for QOS management in IPSANs. The thesis is concluded in Chapter Seven

where the recommendations and future work are also detailed.

155

CHAPTER FOUR: PERFORMANCE ISOLATION OPTIMIZATION

4.1 Chapter Overview

This chapter presents an overview of approaches used to implement

performance isolation in SANs, the problem definition, proposed solution,

optimization of performance isolation and finally a summary of the chapter.

4.2 Problem Definition

For a policy consisting of a list of n unsorted rules r1, r2…rn. A packet di is said

to match rule ri if the fields of rule ri match the header field of packet di. A packet

di may match any of the rules ri,I = 0,1,2,…,n-1.If the matching rule is found on

the ith position then i+1 comparisons will have been made. Thus the average

number of comparisons for a successful search denoted as C is

C =
1

𝑛
∑ (𝑖 + 1)

𝑛−1

𝑖=0
 4.1

Which translates to
𝑛(𝑛+1)

2
÷ 𝑛 =

𝑛+1

2
 4.2

From equation 4.1 it is clear that the time complexity is O (N).

The optimization problem is thus to arrive at a legitimate rule order that results

in the optimal cost C.

To partially achieve the second objective of this study in regard to performance

isolation, the following sub-objectives were formulated and ELPCIS presented

in the next section;

i. Optimize the U32 Linux classifier using the technique of sorting rules,

partitioning rules and linear tree rule structure.

ii. Evaluate the optimization of the classifier using the metrics of time

complexity, latency, throughput and accuracy.

156

iii. Use the classification technique to bind resources to users’ class to

implement performance isolation.

iv. Evaluate performance isolation of the classifier in the IP SAN

environment using response time and throughput metrics.

4.3 Proposed Solution

Since this study used the U32 classifier which is linear search based and a

classifier performance is affected by the speed of matching rules to packets. It

is important to optimize linear search to arrive at the minimum number of packet

matches required for classification decision using linear search(Balogun, 2019).

For this purpose the study uses three techniques for linear search optimization

namely re-ordering the rules, splitting and then structuring the rules in a

sequential tree like structure to remove the anomalies and further reduce the

matching time(Bhaumik, Saha, & Das, 2016). To further optimize the search,

the study uses jump search to move from one linear tree rule structure to another.

The rules are reordered to ensure those rules with high frequency appear at the

top. The splitting of rules is meant to facilitate the use of jump search where the

search process can jump to a given list perceived to have more frequently used

rules. The structuring of the rules in a tree like structure is meant to eliminate

the anomalies of rule positioning, redundant rules and shadowed rules as well

as increase the search speed. The root structure can contain any number of root

nodes and any number of child nodes(Lin & Masa, 2019). Classification action

is performed at the leaf nodes. The applied optimization techniques was found

to reduce the number of matches required for a packet to be classified(Border,

2018). To solve the optimization problem of performance isolation the study

157

came up with an enhanced list based packet classifier for performance isolation

in IP SANs(ELPCIS).The working of ELPCIS is as illustrated in Figure 4.1

 Figure.4.1: ELPCIS Methodology

Figure 4.1 illustrates the process of performance isolation by ELPCIS where it

begins with estimation of the rules priority. Rules priority is important since it

indicates the placement of rules in the classifier. Next ELPCIS sorts the rules

based on priority with the high priority rules appearing at the top. After rules

158

reordering ELPCIS partitions the rules into chunks. Packets are matched in the

chunks created with the algorithm jumping from one partition to another. After

the packets are put into their corresponding classes resources are assigned to

them which ensures they don’t use more than allocated unless there is excess.

This ensures greedy classes of users do not affect the performance of well

behaving classes hence implementing performance isolation.

4.3.1 Packets Feature Extraction and Selection

The selection of features for classification is a critical step since it is vital to

only select relevant features. If many features are used for classification, it

creates classification overhead due to many look up required for the features(Zhi

Liu, Sun, Zhu, Gao, & Li, 2017). Packets in an IP network can be identified

using header information. Feature selection algorithms like filter model and

wrapper model are used to extract features for classification when the features

themselves are not clear. However for this study which used U32 classifier for

classification, the decision of features to use was easy. This is because U32

supports only the features of source IP address, destination IP address, source

port, destination port and transport protocol as features for classification. To

improve previous solutions for example the solution that was proposed by

Zhao, Shimae, & Nagamochi (2004) , this study used the five features of

packets classification instead of the three used by Zhao, Shimae, & Nagamochi

(2004). The adoption of five features was to increase the granularity of the

classifier. In addition research has shown that there is no perfect classification

technique. Traffic classification in modern links require tradeoffs between

accuracy, performance and cost(Dainotti & Claffy, 2012). The main aim was to

159

optimize the classifier performance to greatly reduce any delays that might be

caused by the classification process and interfere with quality of service for

users. Packet features used for classification and their description are as

illustrated in Table 4.1.

Table 4.1: Packet Features Used for Classification

Feature Description

Source IP IP Address of the initiator

Destination IP IP Address of the target

Source port Port of the initiator

Destination port Port of the target

Protocol Transport protocol(ISCSI)

4.3.2 User Classes and Operational Metrics

The information technology industry classifies storage users as either task users,

knowledge users or power users. The task users are employees in an

organization performing repetitive tasks within a small set of applications,

which are usually not CPU and memory-intensive. Knowledge users are

employees in an organization whose tasks include accessing the internet, using

email, and creating complex documents, such as spreadsheets. Power Users are

employees who run CPU and graphic intensive applications. All these users

require a certain level of operational resources (Liveoptics et al., 2019). Table

4.2 illustrates the operational resources required per user for the corresponding

class.

160

Table 4.2: Estimated Operational Resource Per User

Class of user Memory Disk space IOPS

Task user 1GB Memory 25 GB Disk space, 5 IOPS

Knowledge user 2GB Memory 40 GB Disk space, 10-20 IOPS

Power user 4GB Memory 40 GB Disk space 25 IOPS

Table 4.2 shows the estimated operational resources per user. The table further

shows that power users require more operational resources in terms of IOPS,

memory and disk space. Storage level agreement (SLO) is a quality of service

aspect that can be used for measuring performance of a storage system or

storage service provider. A SLO is a combination of one or more QOS metrics

with their corresponding values(Storage Performance council, 2019). Metrics

for measuring storage performance include IOPS, latency, response time and

throughput. The following are the explanation for concepts of storage

performance metrics(Storage Performance Council, 2019).

Block size is a unit of data that is read during an I/O operation. It is a payload

size of a single unit. Comparing it to a highway it is the size of vehicles in a

highway some are small like the cars while others are big like trucks(Liveoptics

et al., 2019). The block size impacts throughput. For example a 24KB block has

6 times the amount of data as the 4KB block. Block sizes are dictated by the

operating system and the type of application. Block sizes impact storage

performance regardless of the type of storage system in place whether it is n FC

SAN or an IP SAN(Storage Performance Council, 2019).

161

However in reality most applications draw a unique mix of block sizes at any

given time depending on the activity (Liveoptics et al., 2019). For comparative

purposed the study used block sizes as used by other researchers. Other

considerations include; since the windows operating system uses a default block

size of 64KB it was included as the experiments were run on windows operating

system. Again the block sizes were chosen based on the options available in the

Parkdale tool used for traffic generation. Therefore for the purpose of this

research the study block sizes of 4KB, 64KB and 1MB were for the simulation

of reads and writes. IOPs (input/output operations per second) is the standard

unit of measurement for the maximum number of reads and writes to non-

contiguous storage locations. Throughput is a product of IOPs and block size.

Their relationship is as illustrated in equation 4.3 (Liveoptics et al., 2019).

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝐼𝑂𝑃𝑠 ∗ 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 𝑖𝑛 𝑏𝑦𝑡𝑒𝑠 4.3

Queue depth is the number of I/O commands that can be queued at a time on a

storage controller at the initiator side or at the target side. If the storage

controller queue depth is reached, the storage controller rejects incoming

commands by returning a QFULL response.

In a configuration with multiple initiators all hosts should have similar queue

depths. This prevents hosts with small queue depths from being starved by hosts

with large queue depths. For small midsized storage area networks a queue

depth of 32 is recommended. Equation 4.4 is used to calculate the queue depth

(Liveoptics et al., 2019).

𝑄𝑢𝑒𝑢𝑒 𝑑𝑒𝑝𝑡ℎ = 𝐼𝑂𝑃𝑠 ∗ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 4.4

162

Table 4.2, Equation 4.2 and Equation 4.3 were used to calculate the SLO for

the system that was emulated using the experiments. The SLO that was

derived is as depicted in Table 4.3.

Table 4.3: SLO for Classes of Storage Users

Class of

user

IOPS Throughput

for Block

size 4KB

Throughpu

t Block size

64KB

Throughpu

t Block size

1MB

Respons

e time

for

QD32

Task user 5

IOPS

20kb/s 320kb/s 5000kb/s 6.4 ms

Knowled

ge user

10-20

IOPS

40-80kbs 640-

1280kbs

10240-

20480kb/s

3.2 ms

Power

user

25

IOPS

100kb/s 1600kb/s 25000kb/s 1.3 ms

Therefore from Table 4.3 the SLO for various classes of users was derived based

on the IOPs and block size. The values for the SLO are throughput in kb/s

followed by IOPS and latency. For a block size of 4KB the SLO for task,

knowledge and power users is as follows; task

users(20kb/s,5IOPS,6.4MS),Knowledge users(60kb/s,15IOPS,1.6-3.2ms) and

power users(100kb/s,25IOPS,1.3ms).The same case applies for 64kb and 1 Mb

block sizes.

To generate a rule list in the study used random Source IP address, Destination

Port, Destination IP Address, Source port, protocol and actions to generate

Table 4.4.

163

 Table 4.4: Sample Classifier Policy with 325 Rules.

From table 4.4 it depicts some of the problems associated with linear based

classifier. Firstly it is noted there is redundancy caused by R1 and R18, R2 and

R7, R12 and R18.This increases the search time for the classifier. In addition

R325 is placed inappropriately could shadow all the rules in the classifier.

Rule Dest IP

add
Dest

Port

Src IP
add

Src
 port

Protocol Action
(Assign

class)

R1 192.168.2.4 3260 192.168.1.1 ANY ISCSI Power user

R2 192.168.2.4 3260 192.168.1.2 ANY ISCSI
Knowledge

user

R3 192.168.2.4 3260 192.168.1.3 ANY ISCSI task user

R4 192.168.2.4 3260 192.168.2.4 ANY ISCSI Power user

R5 192.168.2.4 3260 192.168.1.3 ANY ISCSI Task user

R6 192.168.2.4 3260 192.168.1.1 ANY ISCSI Power user

R7 192.168.2.4 3260 192.168.1.2 ANY ISCSI
Knowledge

user

R8 192.168.2.4 3260 192.168.1.3 ANY ISCSI Task user

R9 192.168.2.4 3260 192.168.1.1 ANY ISCSI Power user

R10 192.168.1.1 3260 192.168.2.4 ANY ISCSI power user

R11 192.168.1.2 3260 192.168.2.4 ANY ISCSI
Knowledge

user

R12 192.168.1.1 3260 192.168.2.4 ANY ISCSI power user

R13 192.168.1.1 3260 192.168.2.4 ANY ISCSI Power user

R14 192.168.1.1 3260 192.168.2.4 ANY ISCSI Power user

R15 192.168.1.3 3260 192.168.2.4 ANY ISCSI Task user

R16 192.168.1.1 3260 192.168.2.4 ANY ISCSI
Knowledge

user

R17 192.168.1.3 3260 192.168.2.4 ANY ISCSI Task user

R18 192.168.1.1 3260 192.168.2.4 ANY ISCSI Power user

.

R325 Any Any Any ANY Drop

164

 4.4 Performance Isolation Optimization Techniques

The following sections looks at the various techniques used for optimization of

the classification process in order to reduce the time required for matching the

rules to packets.

4.4.1 Rules Priority Estimation and Sorting

For optimal performance rules with the greatest hits are placed at the top and

those with fewer hits follow(Danielsson, Seceleanu, Jagemar, Behnam, &

Sjodin, 2019). An experiment was performed to determine the rule hits ratio.

Results of the hit ratio experiment is as illustrated in Figure 4.2

165

Figure 4.2: Rule Hits Distribution over Varied Block Sizes

Figures 4.2 shows the distribution of the hit for rules over an attempt to

read/write files of size 4GB with blocks of size 4KB, 64KB and 1MB .The

results show that the smaller the block size the larger the number of hits. These

phenomena is due to the fact that the smaller the payload the larger the number

(c)

(a) (b)

166

of operations for the read and writes hence the higher the hit rates. The second

observation is that heavy hit rules are experienced from the power users

followed by the knowledge users and lastly the task users. This suggests that, in

order to reduce the operational cost of the classifier, heavy hit rules, should be

placed at the top of the rule list. This will ensure more common rules are

matched very fast therefore increasing the performance of the classifier. To

establish the severity of the arrangement of rules experiments were set up with

and without the reordering. Those experiments that include the proposed

solution have put into consideration the arrangement based on rule hits while

the others have not. The last observation is that there is no correlation between

the number of rules and the hits ratio(Lin & Masa, 2019).

Algorithm1: Sorting Algorithm

Input: An Array of Rules and their Priorities

Output: Sorted Array of Rules and their Priorities

1. For(1; ;)i i n i  

2. If (1 1i ip p ANDi i   then

3. itemp r

4. 1i ir r 

5. 1ir temp 

6. Endif

7. End for

Algorithm 1 accepts rules and their priority which then it sorts them based on

the priority. High priority rules are placed at the top while low priority rules are

place at the bottom of the list. The placement of high priority rules at the top

ensures they are matched first since they hit regularly which ensures the

reduction of search time.

167

4.4.2 Partitioning the Rule List

Next the jump searching algorithm is used to split the rules into partition of size

m. In its simplest implementation the jump search algorithm operates with

jumps the size of the square root of the number of items(Nam et al., 2020). This

fact results into equation 4.5.

𝑚 = √𝑁. 4.5

From equation 4.5, m is the jump search for a list of size N.

Proof 1

For any jump search for a list of size N, given that the number of rules in every

jump size is
𝑁

𝑚
. For m elements in a block the, and beginning at 0 algorithm will

perform m-1 searches . Therefore the time complexity of jump search is

O (
𝑁

𝑚
 + m-1) 4.6

which is less than O(N) since it is divided by the number of partitions.

The average number of comparisons required to find a match is

𝐶(𝑁)𝑎𝑣𝑔 =
1𝑁

2𝑚
+

1

2
(𝑚 − 1) <

1

2
(𝑛 + 2) + 1 4.7

for a sorted list.

Taking the derivative of equation on the right hand side results to 0 and this

results in:

𝑑

𝑑𝑚
(

1𝑁

2𝑚
+

1

2
(𝑚 − 1)) = 0 4.8

−𝑁

𝑚2 + 1 = 0 4.9

𝑚 = √𝑁 4.10

168

For Table 4.4 there are 324 rules which follows that m=18 to arrive at Table 4.5

on page 164.

Algorithm 2: Splitting the rules

Input: N,

Output: Partitioned Array

1. . ();N array Length

2. 𝑚 = √𝑁
3. Function Portion (array, size) {

4. m dividearray = [];

5. For (0; ;)i i n i   {

6. 𝑚 𝑡𝑎𝑖𝑙 = 𝑑𝑖𝑣𝑖𝑑𝑒𝑎𝑟𝑟𝑎𝑦[𝑑𝑖𝑣𝑖𝑑𝑒𝑎𝑟𝑟𝑎𝑙𝑒𝑛𝑔𝑡ℎ − 1];
7. if (! .tail last length size)

8. dividearray.push([array[i]]);

9. } else {

10. tail.push(array[i]); //Else add the current element into the chunk }}

11. return dividearray;}

12. End if

13. End for

Algorithm 3: Jump Search

N-Total number of rules.

m-is the number of Partitions

D- A list of packets. 1 2{ , ,..., }nD d d d .

R-A list of rules. 1 2{ , ,.., }nR r r r

F-A set of packet header fields/column fields. 1 2 3 4 5{ , , , , }F f f f f f .

A- A set of packet classes 1 2{ , ,..., }nA a a a

Input: R, D

Output: A

1. m N

2. If . .i i i id f r f

3. Perform action i //output class associated with action i

4. Else

5. If 𝑑𝑖. 𝑓𝑖 ≠ 𝑟𝑖. 𝑓𝑖 then

6. m++// go to the next partition

7. End if End if

8. go to step 2

169

Algorithm 2 will take input as an array of list of rules and their priorities. The

algorithm will then proceed to split the array into chunks of length size. The

algorithm then returns a nested array with chunks of arrays.

Algorithm 3 will take in list of rules and packets as input. It splits the rules in

portions of size m. It searchers for a class associated with a particular packet

after which the it return the class associated with a given packet based on if the

rule matches the packet. If no match is found in the current partition it moves to

search next partition.

With the partitioned rule list the study uses IP ranges and port ranges to reduce

the number of lines to conserve memory. After removing the anomalies

observed in Table 4.4 and sorting the rule list results in Table 4.5 which is used

to build a sequential tree rule structure shown in Figure 4.4.It is a sequential tree

since there is no branching.

170

Table 4.5: Partitioned Rule List

Table 4.5 shows the portioned rules list with all the redundancies removed. The

table shows that there are more hits from rules associated with power users

indicating that the power users have more priority. The action associated with

each rule is assignment of a class otherwise the packets are put in default class

using rule number 19.The rule lists were used to build a linear tree rule.

Rule Destination

IP address

Destin

ation

Port

Source IP

address

Source

port

Proto

col

Action(assig

n class)

R1 192.168.1.3 3260 192.168.2.4 ANY ISCSI Power user

R2 192.168.1.4 3260 192.168.2.4 ANY ISCSI Knowledge

user

R3 192.168.1.2 3260 192.168.2.4 ANY ISCSI Task user

R4 192.168.1.5 3260 192.168.2.4 ANY ISCSI Power user

R5 192.168.2.4 3260 192.168.1.3 ANY ISCSI Knowledge

user

R6 192.168.1.3 3260 192.168.2.4 ANY ISCSI Task user

R7 192.168.2.4 3260 192.168.1.5 ANY ISCSI Power user

R8 192.168.1.1 3260 192.168.2.4 ANY ISCSI Power user

R9 192.168.2.4 3260 192.168.1.1 ANY ISCSI Knowledge

user

R10 192.168.1.2 3260 192.168.2.4 ANY ISCSI Power user

R11 192.168.1.2 3260 192.168.2.4 ANY ISCSI Power user

R12 192.168.1.3 3260 192.168.2.4 ANY ISCSI Power user

R13 192.168.1.4 3260 192.168.2.4 ANY ISCSI Task user

R14 192.168.1.2 3260 192.168.2.4 ANY ISCSI Knowledge

user
R15 192.168.1.3 3260 192.168.2.4 ANY ISCSI Task user

R16 192.168.1.5 3260 192.168.2.4 ANY ISCSI Knowledge

user

R17 192.168.2.4 3260 192.168.1.4 ANY ISCSI Task user

R18 192.168.1.5 3260 192.168.2.4 ANY ISCSI Power user

.

.

R19 Any Any Any ANY Default

171

4.4.3 Linear Tree Rule Structure Design

The listed classification rules in Table 4.4 have been theoretically analyzed in

chapter two and proven to have conflicts and redundant rules. To eliminate these

problems the study proposed a sequential tree rule classifier. The proposed tree

rule classifier structure is able to curb some of the limitations of listed rule

classifiers. First it is able to avoid conflict which may result due to shadowed

rules and redundant rules. Shadowed and redundant rules are eliminated by

having distinct values for a particular field. Zhao et al., (2011) proved that

removing shadowed rules and redundant rules do not affect classifier policy. By

use of tree rule structure the study arrived at a design that has a single path from

the root node to the terminal hence eliminating the dangers of the bigger rule

problem and swapping of rules(Cherian, 2016).

In the first step of building the tree rules, a partitioned list is taken and one

attribute from the list is used as the root node. Other attributes are then ordered

in a parent to child design until all of them are exhausted. Only unique values

of each field are taken to eliminate the problems of rule positioning, redundant

rules and shadowed rules as well as increasing the search speed, Figure 4.3

illustrates the process of tree building.

To further improve on the design the study used range matches instead of exact

matches as the root node contains as many lines as there are users in the network.

Since the study focus is on allocation of resources the source IP address was

used as the root node to guarantee resources to packets as they traverse the

network from source to destination(He et al., 2013).

172

The tree rule structure was arrived in two steps that is sorting step and the

partitioning step.

Figure 4.3: Linear Tree Rule Structure Building

Figure 4.3 shows how the linear tree rule was built.Partion1 depicts the firt

aprtion in the many partions of size √𝑁. The first partion is composed of high

priority rules since it sits at the top. Feld 1 to Field N depicts the packet header

information used for clasfication.Rules in a partion are traversed from top to

bottom. If a match is found on partion1 then the fields nodes are tarversed

horizontally upto the action node. At the action node the accoaited action is

173

performed and the algorithim stops.However if no match is found in partion 1

the alfgorithim proceeds searching all the partions untill partion N.If no match

is found in aprtion N then the bigger rule which is the last rule in partion N is

used to place packets in the deafult class.

Figure 4.4: Sequential Tree Rule Structure Based on Table 4.5

Figure 4.4 illustrates the result of building the tree rule. From Figure 4.4 it is

evident that rules that are associated with power users are at the top. This can

be explained by the fact that power users have higher priority. The figure further

shows that the lines to be searched were decreased from 19 rules to just 5 rules

by the use of IP address range.

Definition 1

A field f of rule Ri is said to be equal to its corresponding field in packet dj iff

the values corresponding to f in both the packet field and the rule field are equal.

174

dj[f]=Ri[f] iff fj=fi. 4.11

Algorithm 4: ELPCIS Algorithm

The following are definition of variables used in the algorithm

N-Total number of rules.

m N ; m is the number of the partitions.

n Number of rules in each partition.

R-A list of rules. 1 2{ , ,.., }nR r r r

D- A list of packets. 1 2{ , ,..., }nD d d d .

F-A set of packet header fields/column fields. 1 2 3 4 5{ , , , , }F f f f f f .

P-Partitions of rules. 1 2{ , ,..., }nP p p p

A-A set of packet classes 1 2{ , ,..., }nA a a a

W-default class.

Update()-a function that keeps track of recent traffic history.

Reorder () - a function that reorders rules based on traffic characteristics.

Resplit()-a function that re-splits the reordered rules into partitions.

1. INPUT; R, A, W

2. OUTPUT; Packet Classes

3. For(0; ;)m m n m  

4. For(0; ;)i i n i  

5. If . . .i i i i id f r f p then

6. Output ia

7. Else

8. Output w

9. Endif,Endfor ,End for

10. If(m n)

11. Update();

12. Reorder();

13. Resplit(); end if

Algorithm 4 takes input as incoming packet di. The fields of the packet di is

compared to the fields of rule ri. If they match then the corresponding action is

performed. If none of the rules match in the current block of rules then the

counter m is incremented to move to the next block. If none of the rules match

175

then the packets are placed in the default class W. When all the portioned blocks

are searched then the update function is called for capturing current network

changes in terms of hit ratio. Then again the rules are reordered based on the

new hits statistics using reorder() function. After reordering the resplit()

function is called which splits the rules into partitions which are used to build

linear tree rule.

4.4.4 Time Complexity Analysis

From Table 4.4 , since the chances for a match is the same for each rule, then

the average number of matches when using List based packet classifier is

(19
2⁄) × 5 × 𝐶 = 48𝐶 where C is the time is required to compare one field

of a packet to one field of a rule and five is the number of fields in the table that

require comparison.

With the tree rule in Figure 4.4 implemented in ELPCIS, there are on average 5

lines in the source IP field to get (1 + log10 5)𝐶,one line in the destination port

field to get (1 + log10 1)𝐶,three lines in the destination IP field to get

(1 + log10 3)𝐶, one line in the source port field (1 + log10 1)𝐶 and one line in

the in the protocol field (1 + log10 1)𝐶.The additional overhead of 1 is due to

the range match used in the design(He et al., 2013).

Consequently when using the tree rule classifier the average number of

comparison required to make a match is{(1 + log10 5)𝐶 + (1 + log10 1)𝐶 +

(1 + log10 3)𝐶 + (1 + log10 1)𝐶 + (1 + log10 1)𝐶} = 6𝐶. Where C the time

is required to compare one field of a packet to one field of a rule. By dividing

the obtained cost C by one hundred and then multiplying the result by one

176

hundred gives cost C in percentage. Then by subtracting the cost C obtained for

List based packet classier from cost C obtained when using ELPCIS the

mathematical simulation results show that ELPCIS cost C is reduced by 42%

compared to the List Based Packet classifier.

4.4.5 Performance Evaluation

The experiment was bent on evaluating the performance of the proposed

solution. The evaluation consisted of experiments that examined the following

questions;

1. How does average throughput vary with changes in the number of

rules and the block size?

2. How does average response time vary with changes in the number of

rules and the block size?

For this experiments the study used three computers (Intel 2.8 GHZ CPU with

2GB of RAM and 500 GB hard disk).Their roles were that of target, router and

initiator. The router contains two Ethernet cards of 100 Mbps and it was directly

connected with the target and the initiator as illustrated in Figure 4.5. The router

is the computer sitting at the middle. The study used the rule lists in Table 4.5

for best case scenario.

For all the experiments a file size of 4GB which is the maximum file size

possible with the Parkdale simulator was simulated for reads and writes. This

file size was also chosen due to that fact that, the bigger the file size the more

the traffic needed to test ELPCIS for the implemented functionalities. All

experiments have two configuration that is none isolated (List based

177

performance isolation) and isolated (ELPCIS). Duration from each experiment

is 200 seconds.

4.4.6 Throughput.

 Experiments to measure throughput was carried out with and without the

proposed solution.

Figure 4.5 Writes throughput comparison (a) List Based Performance

Isolation and (b) ELPCIS for varied block sizes.

(a) List Based Performance Isolation (b)ELPCIS

178

Figure 4.6 Reads throughput comparison (a) List Based Performance Isolation

and (b) ELPCIS for varied block sizes.

In Figure 4.5(a) and Figure 4.6(a) shows that there is a steady throughput

degradation for the List Based Performance Isolation due to an increase in the

(a) List Based Performance Isolation (b) ELPCIS

179

number of rules. Initially when numbers of rules are less, the throughput of the

List Based Performance Isolation is similar to that of the ELPCIS. As the

number of rules increases the performance of the List Based Performance

Isolation deteriorates while that of the ELPCIS stabilizes. Another observation

is that since the throughput is a product of block size the higher the block size

the higher the throughput.

Figure 4.5(a) and Figure 4.6(a) further shows that the storage users are not able

to achieve their SLO with the list based classifier, this is because the List Based

Performance Isolation causes delays due to the increase in the number of rules

and therefore results in reduced performance as the rules increase.

However with the ELPCIS as illustrated in Figure 4.5(b) and Figure 4.6(b), rule

search time is reduced during the classification process and therefore all the

classes of users are able to achieve an SLO close to the system being emulated.

This is intuitively consistent with what is expected that the users should meet

SLOs close to the system modelled irrespective of the number of rules(He et

al., 2013).

In addition these results are consistent with what is expected and also with

research done in(He et al., 2013) where experiments were performed to compare

the performance of a IPtables which is a list based firewall versus the optimized

list based firewall. The results showed that the performance of the optimized list

based firewall is not drastically affected by the increase in the number of rules

unlike that of list based firewall(Danielsson et al., 2019).

180

4.4.7 Latency

To evaluate for Latency experiments were set up for reads and writes with the

ELPCIS and with the List Based Performance Isolation. The results are as

illustrated in Figure 4.7 and 4.8

Figure 4.7 Latency comparison for writes (a) List Based Performance Isolation (b)

ELPCIS

(a) List Based Performance Isolation (b)ELPCIS

181

Figure 4.8 Latency comparison for writes (a) List Based Performance Isolation

and (b) ELPCIS.

(a) List Based Performance Isolation (a)ELPCIS

182

From Figure 4.7 (a) and Figure 4.8(a) it is observed that the latency for the

List Based Performance Isolation steadily increase with the number of rules. On

the other hand the latency of the ELPCIS slightly increases then stabilizes(He

et al., 2013b). Indicating that the performance of the ELPCIS is not adversely

affected by the number of rules(Danielsson et al., 2019).

From Figure 4.7(a) and Figure 4.8(a) it further observed that the emulated

classes of users are not able to achieve their SLO with List Based Performance

Isolation. However with the ELPCIS as illustrated in Figure 4.7(b) and Figure

4.8(b) all the classes of users are able to achieve an SLO close to the system

being emulated(Pan, Huang, Tang, & You, 2018). These results are consistent

with those in (Gulati & Waldspurger, 2009) where the authors varied the

number of input output operations(Pan et al., 2018). Figures 4.7 shows that the

latency for List Based Performance Isolation solution increased by a factor 2X

for 4KB,a factor of 3X for 64KB and a factor of 10X for 64KB compared to

that ELPCIS. Figure 4.8 further shows that the increase in latency for List

Based Performance Isolation solution by a factor 4X for 4KB, a factor of 10X

for 64KB and a factor of 20X for 64KB more compared to that ELPCIS. More

latency was experienced for reads more than writes due to the additional

overhead of seek and rotational latency experienced when doing reads.

4.5 Classifier Accuracy

To evaluate for accuracy a file of 4GB was simulated for reads and writes with

a queue depth of 32 and a block size of 64KB. The decision to use a block size

of 64kb due to the reason that it’s because it’s the default block size for

windows. For queue depth of 32 as it’s the default in Parkdale and 4GB is the

183

maximum file size possible for simulation while using Parkdale. After the reads

and writes were completed the command tc-s qdisc ls dev etho was run on the

router to generate the total packets generated and the classification per class.

Table 4.6 shows the number of packets classified correctly and total number of

packets generated for the experiment for all the classes of users form ELPCIS

and List Based Packet classifier. The result shows that ELPCIS had almost

double the amount of packets classified correctly compared to List based packet

classifier proving it is more accurate. The table further shows that there were

more packets generated by the power user’s class than the other classes

indicating that the power users had more hits translating to higher priority.

Table 4.6: Statistics of Packet Classification

Class List Based

Performance

Isolation

ELPCIS

Number of packets Number of packets

Power user 4,871,229 4,973,264

Knowledge user 4,813,052 4,935,052

Task user 4,812,035 4,922,035

Total number of packets 14,496,316 14,830,351

Total number of packets

classified correctly

8,117,936

13,199,012

By dividing the total number of packets classified correctly by the total number

of packets generated by all the classes of users. Results obtained showed that

184

the List Based Performance Isolation achieved an accuracy is 56% as compared

to that of ELPCIS of 89%.This indicates an improvement of 33% in

classification accuracy when using ELPCIS.

4.6 Summary

In this chapter the research embarked on the problem of performance isolation.

To achieve performance isolation packets form initiators needs to be classified

for them to be offered differentiated treatment. However most Linux based

classifiers including the u32 classifier filter traffic according to a certain

classification policy which traditionally consist of a list of rules. Arriving

packets are sequentially compared against a list of rule until a match is found.

Due to increase in network speeds and mix of traffic in IP SANs it’s important

for packet classifiers to inspect packets as fast as possible.

In the chapter the study has discussed in details the problems of linear search

and techniques for optimizing linear search. The chapter presents a solution

named ELPCIS for optimizing packet classification process for achieving

performance isolation through throttling of flows.

The ELPCIS was tested and compared with List Based Performance Isolation

and it was found that ELPCIS gives better performance in terms of throughput

and response time when implementing performance isolation. ELPCIS was

tested on an IPSAN and was found to be more suitable than the traditional List

Based Performance Isolation.

185

CHAPTER FIVE: OPTIMIZATION OF BANDWIDTH

MANAGEMENT AND BURST HANDLING

5.1 Chapter Overview

This chapter looks at the various techniques used in the optimization of

bandwidth management and burst handling. Techniques for bandwidth

management used include those of bandwidth borrowing and bandwidth

allocation. That for burst handling include traffic shaping. The chapter

implements an optimized technique for bandwidth management and traffic

shaping. Finally the proposed technique was evaluated using the throughput and

latency metrics.

5.2 Problem Definition

Let I be a set of users to be allocated bandwidth. Three QOS attributes that

comprise the SLO for each class of user are defined to include IOsize, IOPs and

response time which can be defined as;

1. IOPs: The Input/output (I/O) commands per second

2. Response time as the time it takes for a request to receive a response and

constitutes total latency.

3. Queue depth: the number of I/O commands that can be queued at a time

on a storage controller at the initiator side or at the target side.

4. IO size as the amount of data read/written at a given instance.

Let Si denote the SLO associated with a particular class of users where i is a

set of the three QOS metrics as indicated in Equation 5.1

Si= {(𝐼𝑂𝑠𝑖𝑧𝑒𝑖, 𝐼𝑂𝑃𝑆𝑖, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖): ∀𝑖 ∈ 𝐼} 5.1

186

Let rszi denote the I/O request size of class i, IOPi represent IOPs for class i and

rti represent response time for class i. Further, let BR
i
 be the total request

bandwidth by class i based on the SLO.

Consequently, the QOS attribute rszi, IOPi and rti have got the relationship

expressed in equations 5.2 and 5.3

𝐵𝑇𝑅
𝑖 = 𝐼𝑂𝑃𝑖 ∗ 𝑟𝑠𝑧𝑖 5.2

𝐼𝑂𝑃𝑖 =
𝑞𝑢𝑒𝑢𝑑𝑒𝑝𝑡ℎ

𝑟𝑡𝑖
 5.3

Therefore, the total bandwidth, 𝐵𝑇𝑅 required by all the classes can be described

as 5.4;

𝐵𝑇𝑅 = ∑ (𝐼𝑂𝑃𝑖 × 𝑟𝑠𝑧𝑖)
𝑛
𝑖=1 ∀𝑖 ∈ 𝐼 5.4

Let 𝐵𝑅𝑊
𝑖 represent the amount of bandwidth that is configured for the class i to

borrow. The total bandwidth to be borrowed 𝐵𝑅𝑊
𝑇 can be described as in

equation 5.5

𝐵𝑅𝑊
𝑇 = ∑ 𝐵𝑅𝑊 ∀ 𝑖∈𝐼

𝑖𝑛
𝑖=1 5.5

Describing the total bandwidth capacity of the network as 𝐵𝐶 , then

𝐵𝐶 = 𝐵𝑇𝑅 + 𝐵𝑅𝑊
𝑇 5.6

Now, let 𝑥𝑖 be the rate assigned to class 𝑖.Then the utility rate of class 𝑖 can be

expressed as ⋃ (𝑥𝑖)𝑖 which is a concave differentiable function. This means

that an increased allocation to a given class increases the total bandwidth

187

allocated but it has no effect to the one class that has more resources already.

This characteristic makes the utility function to be logarithmic in nature.

Assuming that the network has a fixed capacity and therefore the goal is to

maximize the collective utility of users in the network subject to network

capacity constraints. From this narrative, the maximization problem is

formulated as follows;

𝑚𝑎𝑥 ∑ 𝑈𝑖(
𝑛
𝑖 𝑥𝑖) 5.7

Subject to ∑ 𝑥𝑖
𝑛
𝑖 ≤ 𝐵𝑅𝑊

𝑇 5.8

 𝑥𝑖 > 0, ∀𝑖 ∈ 𝐼 5.9

In the above equations ⋃ (𝑥𝑖)𝑖 is the utility function of class 𝑖 at rate 𝑥𝑖.𝐼 is the

set of classes of users in the network. User 𝑖 is identified with utilization

𝑥𝑖. 𝐵𝑅𝑊
𝑇 is the total excess bandwidth available. This study thus sought to

maximize the concave objective subject to linear constraints.

Based on proportional fairness the utility function

 ⋃ (𝑥𝑖)𝑖 = Log 𝑥𝑖 5.10

Let P be a set of priority that is P= {𝑝𝑖 ,𝑖 ∈ 𝐼}. 5.11

By introducing priority 𝑝𝑖 we have

⋃ (𝑥𝑖)𝑖 = 𝑝𝑖Log 𝑥𝑖 5.12

Let 𝑥𝑖
∗ be the optimal rate and 𝑥𝑖 be the minimal rate.

188

Then for any allocation vector 𝑥𝑖 = {

𝑥1

𝑥2
⋮

𝑥𝑛

} there is an allocation equation as

shown in equation 5.13 based on fairness utility.

∑
𝑥𝑖−𝑥𝑖

∗

𝑥𝑖
∗𝑖 ≤ 0 5.13

From equation 5.13 it is apparent that for any allocation the sum of changes in

the utilities will be less than zero(Guo, Langrené, Loeper, & Ning, 2021). That

is if the rate of a given class 𝑖 increases there is some rate of another class of

users that decreases(Vigneri, Paschos, & Mertikopoulos, 2019).

If excess bandwidth is assigned based on priority proportional fairness results

in the corresponding inequality as shown in equation 5.14.

∑ 𝑝𝑖
𝑥𝑖−𝑥𝑖

∗

𝑥𝑖
∗𝑖 ≤ 0 5.14

The study uses the fairness to investigate the different fairness criteria of max-

min, minimum delay fairness and proportional fairness. The parameter α takes

values in the interval (0, ∞)(Yitu Wang, Wang, Cui, Shin, & Zhang, 2018).

The study defines α as the fair utility function as shown in equation 5.15.

⋃ (𝑥𝑖)𝑖 =
𝑝𝑖𝑥𝑖

1−𝛼

1−𝛼
 Where α≥0,α≠1 5.15

Different values of 𝛼𝑖 yield different fairness criteria. Case one of fairness we

have α→1(Zhang, Deng, & Liang, 2018).

The utility function for this case after introducing priority is as shown in

equation 5.16.

189

⋃ (𝑥𝑖)𝑖 = 𝑝𝑖Log 𝑥𝑖 5.16

Case two of α fairness we have delay fairness where α=2(Zhang et al., 2018).

Therefore the utility function for our case is as illustrated by equation 5.17.

⋃ (𝑥𝑖)𝑖 =
𝑝𝑖

𝑥𝑖
 5.17

Equation 5.18 means that if a class i is trying to transmit a file of size rszi and

the rate allocated to this class is 𝑥𝑖,then results in
𝑟𝑠𝑧𝑖

𝑥𝑖
 as the time taken to transfer

the file.

Case three is that of 𝛼 fairness is that of minimum maximum fairness where

α→∞(Gu et al., 2019).

From the three cases of α fairness discussed above can be summarized as

indicated in equation 5.18.

 ⋃ (𝑥𝑖)𝑖 = {
𝑝𝑖

𝑥𝑖
1−𝛼

1−𝛼
, 𝛼 > 0, 𝛼 ≠ 1

𝑝𝑖Log 𝑥𝑖 , 𝛼 = 1
 5.18

Equation 5.19 represents the priority proportional fairness. From this the study

modeled the solution for priority based fairness utility maximization as depicted

in equation 5.19 subject to constraints in equation 5.20.

Max 𝑝𝑖log 𝑥𝑖 + 𝑝1log 𝑥1 + 𝑝2log 𝑥2 + 𝑝3log 𝑥3+ 5.19

Subject to

𝑥1 + 𝑥2 + 𝑥3 ≤ 𝐵𝑅𝑊
𝑇 , 𝑥1, 𝑥2, 𝑥3 > 0 5.20

190

In order to solve the optimization problem, the study needs to find the optimal

allocations𝑥1
∗, 𝑥2

∗, 𝑥3
∗.To get the optimal allocations the study applied the

Langrage Multiplier on equation 5.19. Again since the theory of convex

optimization holds if the complementary slackness is satisfied, this means the

Langrage multiplies to be used has to be positive. The Lagrangian multiplier for

the problem is as illustrated in equation 5.21.

𝐿(𝑥, 𝜆) = 𝑝1log 𝑥1 + 𝑝2log 𝑥2 + 𝑝3log 𝑥3 + 𝞴(𝐵𝑅𝑊
𝑇 − 𝑥1 − 𝑥2 − 𝑥3) 5.21

Where 𝜆 is the rate at which the optimal value changes as the input increases.

Applying partial derivative,
𝜕𝐿

 𝜕𝑥𝑖
 results in equation 5.23.

 𝑥1 =
𝑝1

𝜆
,𝑥2 =

𝑝2

𝜆
, and 𝑥3 =

𝑝3

𝜆
 5.22

Using the constraint in equation 5.23 results in equation 5.24 and 5.25.

𝑥1 + 𝑥2 + 𝑥3 ≤ 𝐵𝑅𝑊
𝑇 5.23

𝐵𝑅𝑊
𝑇 =

𝑝1

𝜆
+

𝑝2

𝜆
+

𝑝3

𝜆
 5.24

𝜆 =
𝑝1+𝑝2+𝑝3

𝐵𝑅𝑊
𝑇 5.25

By substituting 𝜆 back in equation 5.25 results in equations 5.26, 5.27 and 5.28.

𝑥1
∗ =

𝑝1𝐵𝑅𝑊
𝑇

𝑝1+𝑝2+𝑝3
 5.26

𝑥2
∗ =

𝑝2𝐵𝑅𝑊
𝑇

𝑝1+𝑝2+𝑝3
 5.27

𝑥3
∗ =

𝑝3𝐵𝑅𝑊
𝑇

𝑝1+𝑝2+𝑝3
 5.28

191

Generally, the optimal rate is thus shown in equation 5.29.

𝑥𝑖
∗ =

𝑝𝑖 ∑ 𝐵𝑅𝑊
𝑇𝑛

𝑖=1

∑ 𝑝𝑖
𝑛
𝑖

 5.29

Where 𝑥𝑖
∗ is the optimal allocation for any class i and with priority 𝑝𝑖.

5.3 Proposed Solution

In this section the proposed HPDDRR (Hierarchical Priority Dynamic Deficit

Round Robin) which is a scheduler shaper is described to improve on latency

and bandwidth utilization for flows. HPDDRR is a two stage mechanism which

employs a single level hierarchy to aggregate flows into classes with similar

priority and packet size. The key idea that enables the HPDDRR to alleviate the

latency problem of DRR is the grouping of flows into classes with similar

priority and almost similar packet sizes. This is a feature important since DRR

is optimal when it acts with flows with similar packet sizes. The grouping of

flows is so as to balance packet size per flow which will solve the problem of

delays caused by large packets to small packets. The proposed algorithm begins

by calculating the hit ratio for each class of flows which is sued to determine

the priority of the flows. The priority of the classes is established using the

equation 𝑝
𝑖=

ℎ𝑖
𝑁

 . Where hi is the hit count of class i and N is the total number of

hits.

Use of hit ratio is meant to ensure optimal utilization of bandwidth since the

flows are allocated bandwidth proportional to their priority which is derived

from their need. This reduces the chances of idle bandwidth or under allocation.

Classification is done based on priority with flows of the same priority being

192

put in the same class. From the classification the flows proceed to the shaper

where packets that do conform to rates allocated are forwarded to the scheduler

while those that do not conform are queued as they await bandwidth to be

available.

During shaping, a flow is accepted if and only if the flow capacity is less than

the guaranteed rate plus borrowing rate. Each class/flow can be in one of the

following states. First, it can borrow since the bandwidth is sufficient and the

number of packets sent is less than rate. Alternatively, it may borrow even

though there are no tokens but it can be borrowed from parent class and the

number of packets sent is greater than rate and less than ceil. Finally, it may be

~can’t borrow state where bandwidth available for borrowing is less than the

capacity of packets to be sent. Packets are classified using the u32 filter putting

them into corresponding leaf classes. Bandwidth allocation is done using the

HTB algorithm. HTB starts from the bottom of the class tree to find the class in

the can send state until the class of the can send state is found. If there are many

flows in the can send state the algorithm will select the high priority classes.

Each class sends its own quantum bytes by the means of poling until it’s in the

may borrow state. When the leaf classes is in May-borrow state it will borrow

tokens from its parent’s class until it is in can’t send state.

To ensure the drop rates are low when bandwidth to be borrowed is not enough

the lower priority classes releases some bandwidth at the same time ensuring

that the users that releases the bandwidth their allocations do not fall below

acceptable levels. Low priority classes are the ones that release bandwidth to

193

ensure the high priority classes do not suffer from quality degradation. When

there is enough free bandwidth available the proposed scheme gives the amount

close to the maxima 𝑥𝑖
∗ otherwise if the available bandwidth is lower 𝐵𝑅𝑊

𝑇 then

the bandwidth allocation adjustments will be performed and the allocations for

some low priority classes will be adjusted downwards and allocated the

bandwidth of 𝑋𝑖.Flows are put into priority grades based on the SLO. When

there is a need free the excess bandwidth the algorithm looks up at the low

priority classes and checks the one that has bandwidth greater than the minima.

If it finds that the current low priority class bandwidth is greater than the

maxima the look up stops and the flow releases bandwidth to the high priority

needy flow. If all the low priority flows cannot release enough bandwidth to

satisfy the new flow, the high priority flows are queued.

A node with priority is assigned a bandwidth
𝑝𝑖 ∑ 𝐵𝑅𝑊

𝑇𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖

where 𝐵𝑅𝑊
𝑇 is the total

available bandwidth. The higher the priority the more the bandwidth a flow

receives.

At the scheduler the quantum for each round is calculated based on the rates of

the highest priority class. Figure 5.1 illustrates the schematic architectural

representation of HPDDRR scheduler shaper. HPDDRR begins by grouping

traffic, then shaping traffic and then the flows are allocated bandwidth and are

sent to the IPSAN. This ensures that packets have a service tag associated with

them as they traverse the network. This ensures that resources are allocated

dynamically based on need.

194

Figure 5.1: Architecture of the HPDDRR.

Algorithm 5 presents the step by step execution of HPDDRR for the

optimization of bandwidth management and burst handling. To best represent

the algorithm different parameters are defined as follows;

Algorithim5: HPDDRR

Qmax: The biggest quantum size Possible. (Constant integer-1500bytes)

Qi: Quantum the ideal rate a flow should receive in each round service

(integer)

𝑩
𝑹𝑾
𝑻 : Total available bandwidth

DCi-Deficit from the previous round (integer)

Pi: Priority of class i

𝒑𝒌𝒕𝒊: Packet belonging to queue i

Shaping

F8p8=3

F7p7=2

F6p6=3

F5p5=2

F4p4=1

F3p3=3

F2p2=1

F0 po=1

F1p1=2

Outgoing

flows

𝑄𝑖 = 𝑝𝑖𝑄𝑀𝑎𝑥

 pi = hi/H

Incoming

flows

C
la

ss
if

ic
at

io
n

Scheduling

195

𝑩
𝑻𝑹
𝒊 : is total bandwidth allowed to class i

*
iX : is the maximum rate that a class can request

H: Total hits

hi: Hits from class i

NQI-New quantum i

INPUT: hi, H, 𝐵
𝑅𝑊
𝑇 , 𝐵

𝑅𝑊
𝑖

OUTPUT:𝑝𝑘𝑡𝑖

Step1: Calculate the priority

𝑝
𝑖=

ℎ𝑖
𝐻

 //ℎ𝑖 total hits for class i, H is the total number of hits

Step2: Aggregate traffic into queues based on size and priority

//shaping

Step 3: Shape traffic

𝐵𝑅𝑊
𝑇 = 𝑝𝑖 ∑ 𝐵𝑅𝑊

𝑖
𝑛

𝑖=1

If * i
i TRX B Then

Forward packets for scheduling

Else

Queue packets (delay packets)

 End if

//scheduling

Step4: Calculate the deficit counter based on priority

DCi=0;

𝑄𝑖 = 𝑝𝑖𝑄𝑀𝑎𝑥

While Qi>0 and queue i is not empty do

196

Packet size=size (head (queuei))

If packet size<=Qi then

Send (dequeue (queue i))

NQi=Qi-packet size

Else If packet size <=NQi then

Transmit packet and set NQi=NQi-packet size

Else

DCi=NQi

Endif Endif

Queuei ++

End while

Step 5: If (empty (queuei)) then

DCi=0;

 Repeat

Endif

Algorithm 6 works by shaping traffic then allocating bandwidth. Algorithm 6

starts by shaping traffic. The maximum rate 𝑋𝑖
∗ is the maximum allowed rate

for class i. 𝐵
𝑅𝑊
𝑖 is the total bandwidth allocated to class i. If the class rate is less

than or equal to the available bandwidth the flows are forwarded to the scheduler

otherwise they are delayed.

Next the packets arrive at the scheduler. In the scheduler there are n queues

running from 1 to n that are served in a round robin fashion. Queue i belongs to

class i. Deficit counter DCi stores bytes that a queue belonging to class i did not

197

use in the previous round. At the beginning the DCi is set to zero. Quantum Qi

represents the amount of capacity that each queue can use at each round of

service. Each queue i belonging to class i has a different QOS requirement. For

each queue i there is an associated priority. The requirements of flows belonging

to a class i are established by calculating the priority i. The priority is used as

the performance measure. Based on the priority which is dynamic, the quantum

Qi is calculated using formula

𝑄𝑖 =
ℎ𝑖

𝐻
𝑄𝑀𝑎𝑥 and allocated to each queue based on network statistics. 𝑄𝑚𝑎𝑥is

the maximum packet size that for any packet in an Ethernet network.

If the quantum size Qi >=packet size, then the packet is transmitted, else the

algorithm moves to the next queue. Once a packet is transmitted its size in bytes

is subtracted from the quantum Qi to form NQi. If the NQi is not sufficient to

transmit the packet in the head of the queue then the NQi is stored in DCi to be

used in the next round. Then the algorithm moves to the next round. In the end

the total bandwidth received by a queue i is the total quantum’s received by the

queue. That is

𝐵𝑅𝑊
𝑖 = ∑ 𝑄𝑖

𝑛
𝑖=1 5.31

The difference between HPDDRR and DRR is that in HPDDRR the quantum is

dynamic whereas in DRR the quantum is static.

5.4 Bandwidth Management Optimization

This section presents the results for bandwidth management. Bandwidth

management was implemented using the techniques of bandwidth allocation

and bandwidth borrowing.

198

5.4.1 Bandwidth Allocation

Bandwidth allocation experiment was performed to establish if HPDDRR is

able to enforce proportional bandwidth allocation. An essential feature is that

HPDDRR should allocate each class of users bandwidth proportional to their

share in the range [𝑋𝑖 , 𝑋𝑖
∗].Three hosts running Parkdale and generating 64KB

read/writes IO sizes were used. In addition DDRR was used for the host level

scheduler. The proposed solution was run in the router with hosts’ priority given

allocations based on priority pi set according to shares 1:2:3 for Hosts 1 to

3.Tabel 5.1 illustrates bandwidth utilization and latencies achieved when

HPDDRR implements strict resource allocation. Figure 5.2 further depicts these

results.

Figure 5.2 Bandwidth Allocation (a) Bandwidth Utilization and (b) Latency

received for the three Classes of users with 1:2:3 share ratio.

From Figure 5.2 (a) it is observed that between time t=0 to t=20 all the classes

of users seem to have equal utilization of bandwidth when HPDDRR is not

activated. At t=20 HPDDRR is activated and the results shows that it takes 10

(b) (a)

199

seconds for the system to converge to each class of users SLO. This

convergence time is better than that of PARDA(Gulati, Shanmuganathan,

Zhang, & Varman, 2019) and mClock(Hao et al., 2017) of 30 seconds for the

same configurations of IO size and queue depth. It is with activation of

HPDDRR that bandwidth utilized by each class of users is proportional to the

overall Pi values in proportion to the share ratio. Power users received a

percentage ratio of 50% utilization, Knowledge users received an average

percentage ratio of 33% and task users attained an average percentage ratio of

16%, each matching their 3:2:1 ratio. From this results it is evident that

HPDDRR is able to maintain bandwidth allocation in proportion to the

allocations based on their priority. Secondly it is observed that latencies

achieved are consistent with the expected relationship between bandwidth

allocation and latency. Higher bandwidth allocation results in smaller

latency(Cui et al., 2019).

Figure 5.2 and Table 5.1 confirms the effectiveness of HPDDRR in bandwidth

allocation where bandwidth is distributed based on priority. These results are

similar to those obtained in Solutions like Stonehenge(Gulati et al., 2019),

Argon(Wachs et al., 2007) and Aqua(Wu & Brandt, 2005) support proportional

allocation where users get a disk time share proportional to their weights.

200

Table 5.1: Bandwidth Utilization and Latency observed when Strict

Priority allocation is used.

Class of

User

% Utilization Average

Latency(MS)

Task users 16 6.2

Knowledge

users

33 3.1

Power users 50 1.2

Table 5.1 shows bandwidth utilization and latency observed. The results show

high utilization was experienced by power users while the least utilization was

experienced by task users reflects each class priority. Also it is observed from

the table that the more the utilization the less the latency.

5.4.2 Bandwidth Borrowing

This section outlines results obtained from HPDDRR in attempts to optimize

bandwidth borrowing.

Table 5.2: Bandwidth Utilization and Latency observed when Bandwidth

Sharing is implemented.

Class of

User

% Utilization) Average

Latency(MS)

Task users 17 5.8

Knowledge

users

37 1.8

Power users 38 0.8

Table 5.2 illustrates an increase in average bandwidth utilization for task users

and knowledge users as power users host was stopped at t=100 seconds. The

table shows that other classes of users increase their utilization ad HPDDRR

201

adopts to the changes in the network. From table 5.2 is also observed that an

increase in utilization reduces the latency.

In this case the experiment intended to test the HPDDRR ability to implement

bandwidth borrowing. It is expected that the proposed algorithm needs to be

aware of changing bandwidth requirements and adopt accordingly based on

priority. Experiments were carried out using a 1: 2: 3 share ratio. The three

Hosts were used each generating a work load corresponding to the classes of

task users, knowledge user and power users. Each host run a 64KB random

read/write IO size. All the Hosts are started at the same time with the host

corresponding to power users stopped at between times t=100 to t=120 seconds.

Between times t=0 and t=20 HPDDRR is not activated and all users seem to

utilize equal share of bandwidth as well as experience the same latencies. Fig

Figure 5.3: Bandwidth Borrowing (a) Bandwidth utilization adaptation (b) Latency

adaptation based on the share ratio 1:2:3

However at t=20 HPDDRR is started. Figure 5.3 plots the bandwidth and

latency observed by the three classes of users for a period of 200 seconds.

(b) (a)

202

Note that in Figure 5.3, all flows get utilization proportional to their priority

form t=20 to t=100. Note that when the host for power users was stopped at

t=100 seconds, the now available capacity is distributed in a proportional

manner. Note that the power users did not receive any extra share when restarted

at t=140 seconds since its arrival rate is the same to its SLO rate. These results

are similar to those achieved in (Li & Feng, 2020) where they were able to

optimize throughput and latencies for consolidated hosts under SLO

constraints. In addition there is a clear reduction in latency for knowledge users

and task users when the power users host was stopped. This affirms the claim

by(Peng, 2019) that when throughput increases latency reduces. The results by

Li and Feng(2020),Peng and Varman(2018) demonstrated the same pattern

where an increase in throughput caused a corresponding decrease in latency.

Throughput optimization attained by Li and Feng(2020) in their research was

also achieved through bandwidth borrowing so that when particular host is not

using its share, the excess bandwidth is distributed to those hosts that need it. In

the study this has been achieved by determining maximum bandwidth

distribution based on demands. Optimization of bandwidth usage increases the

throughput as it reduces the latency. Similar patterns were observed in results

obtained in (Peng & Varman, 2018)

In conclusion of this section it is noted that latency can be reduced by managing

bandwidth for each class of users, an observation supported by results obtained

by cited authors in the previous section. It also observed that with HPDDRR it

takes 10 seconds to converge after power users host was stopped and then

started. The convergence time is better than that obtained in PARDA(Gulati &

203

Waldspurger, 2007) where the convergence time was 30 seconds for the same

configurations for IO size and Queue depth. The results obtained in this section

demonstrate the HPDDRR algorithm capability of supporting bandwidth

borrowing as a feature of supporting bandwidth management in IP SANs.

5.5 Handling Bursts

As mentioned earlier, storage traffic is bursty in nature due to application

characteristics among other factors discussed in chapter one of this thesis. This

bursty nature of IO workload makes it difficult to implement proportionate

bandwidth allocation as well as low latency. Experiments were run to establish

how HPDDRR behaves when there are large bursts. Burst arrival scenario is

simulated by having a class of users transmit flows whose rate is more than its

allocated rate. A bursty flow is most likely to miss deadline due to high delays.

It is expected that the algorithm should be able to absorb bursts for other flows

that send bursts equal or less than the allowed value. Solutions like

PARDA(Gulati et al., 2019) and mClock(Hao et al., 2017) use the idle credits

to handle bursts. The flow with the greatest idle value is given the preference.

Contrary to that, HPDDRR uses priority Pi to allocate idle bandwidth for

handling bursts. This ensures the high priority traffic always gets best of service.

Experiments were set up where, three Hosts each running windows server 2016

configured with a 26GB data disk were used. Each host run a 1MB read/write

workload. A 1MB IO size was used so as to generate more traffic compared to

64KB.

204

Table 5.3: Throughput and Latency observed when Priority based Burst

Handling is Implemented.

Class of

User

Average

Throughput(KB/s)

Average

Latency(MS)

Task users 4500 6.1

Knowledge

users

21223 4.0

Power

users

25135 1.3

Table 5.3 results demonstrates how the system adapts when HPDDRR is

enabled to adhere to each class of users SLO.it shows that HPDRR uses excess

bandwidth to handle burst. Knowledge users send burst continuously which

causes an increase in latency when no excess bandwidth is available.

Knowledge users experience violation of its SLO latency with an increase in

latency from 3.2m/s to 4.0 m/s.

Figure 5.4:Burst handling (a)Knowledge users sends burst more than allowed

values Power users and Task users send bursts equivalent to allowed value(b)

Knowledge users don’t meet the deadline whereas power and task users meet the

deadlines.

(a) (b)

205

To test how the system handles bursts, the following SLO parameters were used;

<IMB,25000KB/s,1.4MS>,<IMB,20000KB/s,2.4MS>,<IMB,5000KB/s,6.4M

S>,for power users, knowledge users and super users respectively. Figure 5.4

plots the results for 200 seconds. Table 5.3 illustrates the bandwidth and

latencies attained when doing burst handling.

 Figure 5.4 demonstrates how the system behaves before HPDDRR is enabled

and after it is enabled. From Figure 5.4 it is noted that for the first 20 seconds

knowledge users send bursts of 1200 KB every 5 seconds. This is seen to reduce

the throughput of task users and powers users as well as increase their latency.

In this case all the class of users SLO is violated. At t=20 HPDDRR is enabled

and takes 10 seconds to converge to the SLO. This convergence time is better

than that of PARDA and mClock(Gulati et al., 2019) of 30 seconds for the same

configuration of IO size and queue depth. At t=60 the knowledge users send

again spikes of 1200KB/s each 5 seconds, however this time other users are not

affected. This can be attributed to the capability of HPDDRR to shape traffic.

At t=140 both power users and knowledge users send spikes of 2000KB every

five seconds. However it is evident that the throughput for power user’s

increases but the latency does not unlike for knowledge users. This is due to the

fact that HPDDRR uses priority to assign extra bandwidth for handling bursts

unlike the knowledge users whose latency increase significantly due to lack of

extra bandwidth for handling bursts which has been allocated to power users

who have higher priority. This phenomena proves that HPDDRR uses priority

206

to handled bursts. High priority flows will be given priority when it comes to

allocation of spare bandwidth required for transmitting bursts of traffic.

From Figure 5.4 it is further evident that HPDDRR is able to absorb burst if the

burst value is not higher than the burst size parameter and therefore able to

handle burst for well behaving flows. These results are similar to those achieved

in researches by Peng et al., (2019) and Peng and Varman(2020) where the

authors were able to guarantee latencies based on SLO by shaping workloads.

This was made possible by ensuring bursty and non-busty flows are smoothed

in order to avoid head of line congestion.

5.6 Summary

In this chapter the problem of bandwidth management and burst handling was

studied. The study proposes HPDDRR which uses hierarchical structure and a

dynamic quantum to increase bandwidth utilization as well as reduce latencies

experienced by flows in IP SANs.

Evaluation done on HPDDRR shows that it is able to provide proportional

allocation of bandwidth to classes of users based on priority and adopt the

utilization experienced by traffic classes of users based on network conditions.

HPDDRR has also been proven through experiments that it is able to absorb

bursts from classes of user’s flows.

A hierarchical shaper can support more precise scheduling for the high rate

traffic, this can significantly reduce latency and jitter relative to existing

approaches. With the hierarchical structure the sorting granularity for

207

connection is reduced due to grouping. This reduces the implementation

overhead and interference between competing connections.

208

CHAPTER SIX: INTEGRATION OF QOS TECHNIQUES AND

VALIDATION

6.1 Chapter Overview

This chapter looks at the Integration and evaluation of the QOS techniques of

performance isolation, bandwidth management and burst handling.

6.2 Integrated QOS Management Technique

The implementation of IQMIS was done on a central router so as to ensure

centralized management of QOS which is expected to reduce overhead of

having the IQMIS running on multiple locations unlike in solutions such as

PARDA(Gulati & Waldspurger, 2009) and Argon(Wachs et al., 2007) which

cannot support centralized management of QOS.

Figure 6.1 illustrates the four functional modules of IQMIS namely; priority

estimation module, performance isolation module, bandwidth management

module and burst handling module. The figure further shows that IQMIS begins

by estimating the priority of particular flows of traffic. This priority is sued in

the performing performance isolation. After performance isolation burst

handling is done then bandwidth management. The traffic is then sent to the

IPSAN. The Figure further illustrates that IQMIS gets its input from IPSAN for

the adjustment of resources allocation based on the network statistics.

209

Figure 6.1: IQMIS Architecture.

6.2.1 Priority Estimation Module

The priority estimation module is designed to capture the current network

statistics and calculate the priority of each flow i. The rule that experiences more

hits and the class associated with this rule are given high priority. Whereas the

rule that experiences less hits and its associated class are considered to be of

lower priority. The priority is meant to be used to forecast on the amount of

Burst Handling

𝑄𝑖=𝑃𝑖𝑄𝑚𝑎𝑥

SHAPING

IP SAN
Priority Estimator

𝑃𝑖 =
ℎ𝑖

𝐻

PERFORMANCE ISOLATION

Packet classification

Rule

sorting

Rule

Splitting

Tree

rule

Incoming Packets

SCHEDULING

Bandwidth Management

210

resources a certain class of users requires. For each flow i the priority estimation

module calculates its priority using equation 𝑝
𝑖=

ℎ𝑖
𝐻

.The 𝑝
𝑖=

ℎ𝑖
𝐻

 indicates that the

value H can be used to adjust the pi for allocating SLO constraints .The larger

the H the smaller the pi. The smaller the pi, the smaller the amount of resource

particular flow will get. The values of pi and those of latency and jitter are

inversely related. That is when pi increases latency and jitter reduces. On the

other hand throughput and pi are linearly related that is the bigger the value of

pi the larger the value of throughput.

6.2.2 Performance Isolation Module

In IP SANs environment there are mixed workloads which compete for

bandwidth. To ensure that users operating within their SLOs do not get

interference from users not operating within their SLOs, the performance

isolation module classifies packets based on classes and enforces a strict

isolation of resources to different classes of users. Since the proposed solution

was implemented in a Linux environment, the researchers utilized the U32 as

the classifier of choice as discussed in chapter three of this thesis.

A packet di is classified based on the header information that is source IP,

destination IP, Source port, destination port and protocol. The same fields are

components of rule ri. A packet di is said to match rule ri if and only if

di.fi==ri.fi.. Based on the rule that match the associated action is performed. The

rules are assigned priority based the number of hits then are sorted based on

descending order of priorities with high priority rules sitting at the top. To

further ease the search the rules are split into m partitions where 𝑚 = √𝑁t is the

211

number of partitions while N is the total number of rules. The partitions enables

the use of jump search while the number of jumps will be equal to
𝑁

𝑚
 .This

reduces the time complexity from 𝑂(𝑁) to 𝑂(
𝑁

𝑚
+ 𝑚 − 1). Once the rules are

partitioned a linear tree rule is built to place packets in their respective classes.

After classification packets are forwarded to the shaper

6.2.3 Burst Handling Module

The burst handling module is meant to delay packets so that they form a constant

flow. Burst handling is implemented using traffic shaping. The proposed traffic

shaping algorithm takes in various QOS classes i (i=1...n) and uses a dynamic

time interval ts to send traffic in burst. Since the egress interface is a timed

interface it is not possible to reduce the rate at which it transmits packets, to

achieve a rate lower than the interface rate, packets are sent then stopped at

regular interval ts. This eventually makes the average rate lower than interface

rate. The time interval ts is meant to ensure that on average a committed rate

𝐵𝑇𝑅
𝑖 is sent for each class.

Each session consist of n queues qi each containing flows belonging to the same

class and priority. High priority queue are placed at the top .At any time if the

queue is not full and the time ts has not elapsed the incoming flows are not

delayed. Otherwise the packets are sent and the ts is reset to zero. The two events

that trigger the sending of packets is when 𝑋𝑖
∗ ≤ 𝐵𝑇𝑅

𝑖 and ts has expired.

6.2.4 Bandwidth Manager

The bandwidth management algorithm begins by establishing the quantum 𝑄𝑖

which is the amount bits that can be transmitted in each round from queue

212

𝑖 based on priority 𝑝𝑖 =
ℎ𝑖

𝐻
. The value 𝑄𝑖 represents 𝑃𝑖 × 𝑄𝑀𝑎𝑥. Where 𝑄𝑀𝑎𝑥

is the maximum possible size of any packet that can exist in the network. To

ensure service differentiation queues are arranged hierarchically in one level

instead of one FIFO queue found in best effort. The one level arrangement

ensures that the complexity of 𝑂(𝐿) is obtained where 𝐿 is the number of

hierarchy levels. Again to retain the complexity of 𝑂(1),𝑄𝑖 is always greater

than any packet size. This means that for each round, queue 𝑖 is able to transmit

at least one packet. However if all the packets cannot be transmitted in the first

round the reminder of 𝑄𝑖 is stored in counter 𝐷𝐶𝑖.Otherwise if all packets are

transmitted 𝐷𝐶𝑖 is set to zero.To ensure fairness the DCi is to Qi in the next

round.

Algorithm 6: IQMIS

N: Total number of rules

D: Packets

m: Rule partitions

H: Total number of hits for rules

F: Fields of a rule or packet

Q: Quantum size

Bi
TR: Total bandwidth allocated to class i

W: Default action

Input: R, list of rules r𝜖𝑅

 D: Packets 𝑑𝜖𝐷

Output: Flow of packets

//Count the hits

1. If currentrulei==incoming rule then

2. Counti=counti+1

3. Else

213

4. Counti=1

5. EndIf

// calculate priority

6. 𝑝𝑖 =
𝑐𝑜𝑢𝑛𝑡𝑖

𝐻

//Sort rules

7. For (1; ;)i i n i  

8. If (1 1i ip p ANDi i   then

9. itemp r

10. 1i ir r 

11. 1ir temp 

12. Endif

13. End for

// Partition rules

14. m N

// Classify packets

15. For (0; ;)m m n m  

16. For (0; ;)i i n i  

17. If . . .i i i i id f r f p then

18. Output ia

19. Else

20. Output w

21. End if End for End for

// Burst handling

22. If
* i
i TRX B Then

23. Forward packets for scheduling

24. Else

25. Queue packets (delay packets)

26. EndIf

// Scheduling

27. Qi=PiQmax

28. If packet size<=Qi Then

29. Dequeue packet

30. NQi=Qi-Packet size

31. Forward packets

32. Else

33. Queue++

34. End if

35. Stop

6.3 Validation of IQMIS

The following sections discusses how QIMIS was validated. Details of each

validation approach is discusses there in.

214

6.3.1 Validation Metrics

Experiments were set up to establish the performance of the proposed system

based on the QOS metrics of throughput, jitter and latency. Reads were

simulated to mimic the real IP SAN environment.

Equations 6.1 and 6.2 were used to calculate the percentage throughput

deviation and latency deviation respectively

%𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑎𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
𝑋100

 6.1

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 6.2

The following sections presents the results of throughput, latency and jitter

obtained by using I/O sizes of 4KB, 64KB and 1MB for a period of 200 seconds.

For all the experiments three scenarios were considered corresponding to IO

sizes of 4KB, 64KB and 1MB.These choice of IO size was influenced by the

fact that in the literature other researchers use the same IO sizes as used in this

study. The choice was influenced by the need to compare the performance of

other researches with the results of the study.

6.3.2 User QOS Mapping

Different users have varied QOS requirements which should be matched to

corresponding QOS requirements. Users flows mapped to the same SLO are put

on the same queue. Through this mapping the router can be able to provide

differentiated treatment of flows. Based on the user’s requirements in delay and

throughput we map users to three QOS levels. The mapping relations are shown

215

in Table 4.3. Power users and knowledge users are sensitive to delay as

illustrated by the low latency/response time. The task users are less sensitive to

delay however they require bandwidth guarantee.

6.3.3 Validation Setup

The validation experiment is as illustrated in Figure 3.1. Specifications for

initiators and targets are as illustrated in Table 3.2. Parkdale disk benchmarking

tool was used to simulate the reads and writes. The initiators were setup with

initiator mode ISCSI driver while the target storage were configured target

mode. Experiments were used to validate the proposed systems based on

latency, throughput and jitter. In all the experiments a File size of 50MB was

used unless otherwise stated. All experiments were run three times for a period

200 seconds and averages recorded.

6.4 Validation Results

Table 4.7 shows a summary of all the packets generated per each class of user

based on IO size.

216

 Table 6.1 Total Number of Packets Generated

Table 6.1 shows that power users generated more packets than other classes of

users. This means that rules associated with the class experiences more hits

therefore making the class high priority class.

6.4.1 Throughput versus IO Size

Throughput is the measure of the number of packets delivered to the destination

successfully(Nam et al., 2020). For good QOS the value of throughput should

be high. We expect correlation between throughput and IO size. To verify this

experiments were configured with three hosts across a 26 GB volume.

Figure 6.2 shows the throughput of task users, knowledge users and power in

the best effort case and using the proposed solution scenarios. In best effort

scenario in as illustrated in Figure 6.2(a), the lack of QOS management scheme

causes hosts to have unstable throughput and a lot of unfairness. Ideally power

users would perform better than other users. In the proposed solution scenario

as illustrated by Figure 6.2(b), the unfairness is corrected by isolating users by

IO Size Total Number of Packets Generated Per Class

for ISCSI Protocol.

Knowledge

user

Task

users

Power

users

Default

class

4KB 60,645,186 56,842,884 60,091,227 2,736,342

64KB 50,278,725 47,894,490 52,016,415 2,194,290

1MB 38,649,555

38,345,076 45,360,000 1,556,415

Grand

Total

149573466 143082450 157,467,642 6487047

217

decoupling the throughput of the three classes of users and lets them process

packets at their own rates.

Figure 6.2: Throughput for 200 seconds (a) Best effort (b)IQMIS.

(a) Best effort (b) IQMIS

218

Generally from Figure 6.2(b) it is observed that at t=0 there is the lowest

throughput which increase up to t=20 where it stabilizes. The stability is

brought about by the proposed solution being able to optimize bandwidth usage

as well as isolate performance of one flow from the other. Table 6.2 further

illustrates the results of scenario 1.

Table 6.2: Scenario 1 with IO size of 4KB

 Scenario1 represents the situation when using an IO size of 4KB for both using

IQMIS and best effort. Table 6.2 shows that all users receive a throughput close

to the SLO with a negative percentage deviation from the SLO of 3%, 0.8% and

0.2 Kb/s for task users, knowledge users and power users respectively when

using the IQMIS. The same is observed when using the best effort. That is the

task users, knowledge users, and power users attained a negative percentage

deviation of 5%, 1.6% and 1%. These results show that when using best effort

the reduction in throughput increases by a factor 2X compared to when using

C
la

ss
 o

f
U

se
r

E
x
p

ec
te

d

S
L

O

T
h

ro
u

g
h

p
u

t

IQ
M

IS

T
h

ro
u

g
h

p
u

t

B
es

t
E

ff
o
rt

D
ev

ia
ti

o
n

 1

D
ev

ia
ti

o
n

 2

Task users 20 19.4 19 -0.6 -1

Knowledge

users

60 59.5 59 -0.5 -1

Power

Users

100 99.8 99 -0.2 -1

219

IQMIS. These indicates that IQMIS is able to make the network operate very

close to the SLO compared to best effort. However the deviation are small and

this can be explained by the fact that since with IO size of 4KB the congestion

is low and therefore all the users are able to meet their SLO. This is consistent

with results obtained by authors Jaiman et al.,(2018) showing that a large IO

size produce more traffic that would congest the network. Therefore the smaller

the IO size the less the congestion. Table 6.3 depicts the results of scenario 2.

Table 6.3: Scenario 2 with IO size of 64KB

C
la

ss

o
f

u
se

r

E
x
p

ec
te

d

S
L

O

T
h

ro
u

g
h

p
u

t

IQ
M

IS

T
h

ro
u

g
h

p
u

t

B
es

t
E

ff
o
rt

D
ev

ia
ti

o
n

 1

(I
Q

M
IS

)

D
ev

ia
ti

o
n

 2

(B
es

t
E

ff
o
rt

)

Task users 320 300.16 263.13 -19.84 -56.87

Knowledg

e users

960 919.55 858.09 -40.45 -101.91

Power

Users

1600 1540.03 1282.22 -59.97 -317.78

In scenario 2 when using an IO size of 64KB the following observation were

made. Results in Table 6.3 indicate that with the IQMIS a negative percentage

deviation from the SLO of 6.2%, 4.2% and 3.7% for task users, knowledge users

and power users respectively was attained. On the other hand when using best

effort a negative percentage deviation from the SLO of 17%, 10.6% and 19.86%

for task users, knowledge users and power users respectively.

220

This can be explained by the fact that an increase in IO size results in a

corresponding increase in traffic which causes congestion(Jaiman et al., 2018).

However for the proposed solution since it implements performance isolation,

bandwidth management and traffic shaping the deviation is minimal compared

to that of best effort. Table 6.4 represents the results of scenario 3.

Table 6.4: Scenario 3 with IO size of 1MB

C
la

ss

o
f

u
se

r

E
x
p

ec
te

d

S
L

O

T
h

ro
u

g
h

p
u

t

IQ
M

IS

T
h

ro
u

g
h

p
u

t

B
es

t
E

ff
o
rt

D
ev

ia
ti

o
n

 1

(I
Q

M
IS

)

D
ev

ia
ti

o
n

 2

(B
es

t
E

ff
o
rt

)

Task users 5000 4012.3 3543.30 987.7 1456.7

Knowledge

users

15000 12750 11762 2250 3238

Power

Users

25000 22890 20896 2110 4104

In scenario 3 an IO size of 1MB was used and the results are as indicated in

table 6.4. Table 6.4 shows that IQMIS all users experienced a negative

percentage deviation from the SLO of 19.8%, 15% and 8% for task users,

knowledge users and power users respectively. On the other hand when using

best effort a negative percentage deviation from the SLO of 29.1%, 22% and

16% for task users, knowledge users and power users respectively.

This can be explained by the fact that an increase in IO size results in a

corresponding increase in traffic which causes congestion(Jaiman et al., 2018).

221

However for the proposed solution since it implements performance isolation,

bandwidth management and traffic shaping the deviation is minimal compared

to that of best effort.

It is further observed that when using best effort the task user’s experiences the

greatest deviation for scenario 2 and scenario 3 and the lowest is experienced

by knowledge users. This is contrary to what is expected given that power users

have got higher priority and therefore should have a smaller percentage

deviation. This can be explained by the fact that best effort technique lacks the

mechanism of prioritization present in IQMIS. This is consistent with results

obtained in (Gulati & Varman, 2010) where it was found that resource

reservations and controls are able to provide predictable performance. In the

results obtained the expectations were that high priority users should be

provided with predictable service. The results obtained were consistent with the

expectations and those obtained by Billaud and Gulati(2013),Gulati and

Waldspurger(2009) and Peng(2019) proving that IQMIS is work conserving

6.4.2 Latency and IO size

Latency is the time it takes for a packet to reach its destination. Latency has a

lot of effect on network performance degradation and effects the user QOS.

High latency is caused by congestion which results in poor QOS. In this case

the study considered end to end delay that is the time taken from source to

destination(Jaiman et al., 2019). Figure 6.3 analyzes the latency experienced by

the three classes of users against time for best effort and proposed solution.

Latency was measured for three scenarios for IO sizes of 4KB, 64KB and 1MB.

222

Figure 6.3: Latency for 200 seconds (a) Best effort, (b) IQMIS

For scenario 1 where an IO size of 4KB was used all users experienced a latency

lower than that expected for both the IQMIS and the best effort. Even though

(a) (b)

223

the best effort has no QOS mechanisms implemented here in IQMIS, all the

users still meet their deadlines. This can be explained by the fact that when a

small IO size is small there is low congestion since they occupy the network for

a short time(Jaiman et al., 2019) which does not lead to resource competition

and therefore does not require any management. Table 6.5 depicts scenario 1.

 Table 6.5: Scenario 1 with IO size of 4KB

C
la

ss
 o

f
U

se
r

E
x
p

ec
te

d

S
L

O

L
a
te

n
cy

IQ
M

IS

L
a
te

n
cy

B
es

t
E

ff
o
rt

L
a
te

n
cy

D
ev

ia
ti

o
n

 1

(I
Q

M
IS

)

D
ev

ia
ti

o
n

 2

(B
es

t
E

ff
o
r
t)

Task users 6.4 5.6 6.0 -0.8 -0.4

Knowledge

users

3.2 2.4 2.9 -0.8 -0.3

Power

Users

1.3 0.6 1 -0.7 -0.3

224

Table 6.6: Scenario 2 with IO size of 64KB

C
la

ss
 o

f
u

se
r

E
x
p

ec
te

d

S
L

O

L
a
te

n
cy

IQ
M

IS

L
a
te

n
cy

B
es

t
E

ff
o
rt

L
a
te

n
cy

D
ev

ia
ti

o
n

 1

(I
Q

M
IS

)

D
ev

ia
ti

o
n

 2

(B
es

t
E

ff
o
r
t)

Task users 6.4 5.8 7.7 -0.6 +1.3

Knowledge

users

3.2 2.8 5.4 -0.4 +2.2

Power

Users

1.3 1.1 2.6 -0.2 +1.3

Table 6.7: Scenario 3 with IO size of 1MB

C
la

ss
 o

f
u

se
r

E
x
p

ec
te

d

S
L

O
 L

a
te

n
cy

IQ
M

IS

L
a
te

n
cy

B
es

t
E

ff
o
rt

L
a
te

n
cy

D
ev

ia
ti

o
n

 1

(I
Q

M
IS

)

D
ev

ia
ti

o
n

 2

(B
es

t
E

ff
o
r
t)

Task users 6.4 6.0 10.79 -0.4 +4.39

Knowledge

users

3.2 2.8 10.47 -0.4 +7.27

Power

Users

1.3 1.1 5.52 -0.2 +4.22

In scenario two and three an IO size of 64KB and 1MB are used respectively.

An increase in IO size resulted in an increase in the traffic which leads to

competition of bandwidth(Jaiman et al., 2019). Tables 6.5, 6.6 and 6.7 shows

225

that IQMIS achieves a negative deviation for all users. A negative deviation

means that users were able to achieve a latency lower than expected which

means all users were able to meet their deadlines. Conversely with best effort,

it was observed that all users attained a positive deviation which means that user

surpassed the latency threshold that was expected and none met their deadlines.

This phenomena can be explained by the fact that best effort lacks the QOS

techniques of performance isolation, bandwidth management and burst

handling implemented in the proposed solution.

Absence of these mentioned techniques results in free for all competition for

bandwidth due to lack of prioritization mechanisms users are able to interfere

with each other resulting in un uniformed latency(Gulati & Varman, 2007). In

addition FIFO queues used in best effort do not provide a way for isolating

traffic. An increase in latency can also can be attributed to the use of DRR in

best effort. When using DRR for scheduling, big packets lead to an increase in

head of line latency which delays smaller maybe more important packets.

Results obtained by Wang et al., (2012) also showed similar pattern where it

was found that achieving low latency requires smaller queues. Lack of

optimized scheduling algorithm results in larger queues which results in

increased latency as witnessed in best effort. Similarly mixing of big and small

packets results in headline delay causing more latency for smaller packets as

witnessed when best effort is used.

It is further noted that for all the scenarios all users experience a low latency

between time t=0 and time t=20. This is because before the 20 seconds traffic

226

has not reached saturation therefore there is less latency. In summary it is

important to note that when using IQMIS, each class of user the latency goals

are satisfied contrary to when using best effort. When using best effort latency

increases by a factor of 2X.This demonstrates the inability of conventional

scheduling techniques in providing acceptable latencies in presence of huge

traffic loads.

6.4.3 Jitter and IO size

Jitter is the variation in delay experienced by packets reaching a destination thus

its presence is unwanted but unavoidable. Therefore there is always a small

amount of jitter. From the experiments jitter observed under IQMIS and best

effort was recorded as shown in Table 6.8 and Figure 6.5.

Table 6.8: Average Jitter in Milliseconds

Table 6.8 illustrates average jitter in milliseconds with IQMIS experiencing

smaller jitter compared to best effort for all IO sizes. It is further observed that

the jitter increases with an increase in IO size.

 IQMIS BEST EFFORT

Storage user Time 4KB 64KB 1MB 4KB 64KB 1MB

Task users 200s 4.2 5.2 5.6 6.0 6.5 9.9

Knowledge

users

200s 3.2 3.5 3.8 4.0 4.7 7.6

Power users 200s 1.0 1.1 1.2 1.3 2.3 4.4

227

Figure 6.4: Jitter for 200 seconds (a) Best Effort (b) IQMIS

(b) IQMIS
(a) Best Effort

228

Figure 6.4 analyzes the jitter experienced for 200 seconds for IO sizes of 4kb,

64KB and 1MB. At t=0 a jitter of 0 was observed and therefore the system

experiences the best performance at t=0.

From Figure 6.4 it is observed that when an IO size of 4kbyte is used there is

no congestion and therefore jitter of the three classes of users is small. This is

consistent with results obtained by Peng and Varman(2020) and Jaiman et

al.,(2019) that the larger the IO size the more time the traffic occupies the

network and therefore the more the jitter.

For an IO size of 64KB the best effort technique a jitter of 6.5 for task users, 4.7

for knowledge users and 2.3 for power users was observed. While for the IQMIS

jitter of 5.2, 3.5 and 1.1 were observed for task users, knowledge users and

power users respectively. A reduction of 20%, 25% and 52% on average. This

clearly shows that the IQMIS outperforms best effort. The same trend of an

increase in jitter is observed for 1MB. The reason why the proposed technique

outperforms the best effort is that the proposed technique uses a hierarchy of

levels for flows which isolates traffic and avoids interference between flows as

opposed at the best effort where all flows are using single FIFO queues.

Minimum jitter was observed for 4kbyte, while maximum jitter was observed

for 1MB IO size. From the results it is also observed that task users have the

highest jitter for the given configuration. This can be attributed to their low

priority.

229

6.5 Summary

In this chapter the integrated approach has been implemented that includes the

QOS techniques of performance isolation, bandwidth management and traffic

shaping. The performance isolation module ensures that flows don’t interfere

with each other performance. The bandwidth management module ensures that

each flow/class of user gets a share proportion to its current need. This is

achieved through regular computation of priority. The IQMIS is implemented

in Linux router and causes little delay. Through experimentation it has been

verified that the IQMIS works as intended.

230

CHAPTER SEVEN: CONCLUSION, RECOMMENDATIONS AND

FUTURE WORK

7.0 Chapter Overview

This chapter discusses a summary of the study as well as the main contributions

of the study. Then the thesis looks at future work and possible extensions to the

proposed solution

7.1 Conclusions

Contributions of this thesis were drawn from meeting the set out objectivist

contributions include: A comprehensive literature review on QOS in IP

Networks. Optimization of QOS techniques of performance isolation (ELPCIS),

bandwidth management and burst handling (HPDDRR). Development of

IQMIS based on the optimized techniques of performance isolation, bandwidth

management and burst handling. Demonstration of improved QOS provision by

new IQMIS. Briefly, each of these is described and the sections of coverage

highlighted for ease of reference

Analyze the QOS techniques used in IP networks: To address the first

objective, the thesis first looked at technologies for the support of IP storage

area networks were reviewed in section 2.7 these include FCIP, IFCIP and

ISCSI.ISCSI was found to be able to run on any existing IP network unlike FCIP

and IFCIP which require some fiber channel aspect. ISCSI was also found to be

cheap and easy to implement.

 Secondly in section 2.12 the thesis looked at the various QOS metrics that

relates to storage area networks which were to be used to evaluate the

performance of the ultimately proposed solution. Consequently, the various

231

QOS techniques namely the Intserve, Diffserve and MLP were identified and

analyzed as presented in section 2.13 of this thesis. It was established that the

Diffserve was more simpler and scalable QOS and therefore suitable for the IP

SANs.

Optimization of Performance isolation: To solve the problem of performance

isolation optimization, the study came up with ELPCIS which is a classifier that

groups traffic based on classes to provide limits and reserves in order to achieve

performance isolation between the groups of users. Through the use of limits

and reserves ELPCIS is able to achieve performance isolation which allows

classes of users to achieve throughput and latencies within their SLO

independent of the behavior of other users. Empirical results shows that ELPCIS

is light weight and efficient with a low implementation cost of 6% compared to

that of List based packet classifier of 48% which is a reduction in terms of cost

by 42%. Further the results show that ELPCIS has classification accuracy of

89% compared to that of Lists based packet classifier of 56% which is an

improvement in terms of accuracy by 33%. ELPCIS provides a scalable

performance isolation algorithm that uses network statistics to allocate

resources and achieves elastic network utilization.

Optimization of bandwidth management and burst handling: Chapter five

of this thesis combined the objectives of optimization of bandwidth

management and burst handling. To address the problem of optimization of

bandwidth management and burst handling the study developed HPDDRR

which is a Scheduler shaper that dynamically and adaptively applies priority to

232

attain optimization goal. HPDDRR enforces hierarchical reservation, limit and

proportional shares of bandwidth based on priority. Specifically HPDDRR

maximizes the throughput and reduces latency under the stated constraints.

Through experiments the study has showed that HPDDRR is work conserving

by implementing bandwidth sharing and is also able to efficiently enforce

controls for diverse workloads. In addition the results shows that well behaving

flows do not miss deadlines. Moreover HPDDRR out performs earlier solutions

in terms of adopting quickly to the network changes by incurring a small

convergence time of 10 seconds compared to convergence of 30 seconds

incurred in best effort and earlier solutions. A reduction of convergence time by

20 seconds. Furthermore to network administrators and researchers, HPDDRR

offers a solution that automatically uses network statistics to determine priority

of flows and allocates network resources appropriately to flows based on their

priority requirements without requiring manual interventions.

Integration and validation of the integrated technique: QOS is a vital issue

in environment of mixed works like IP SANS. To solve the problem of offering

complete QOS in IP SANS the study came up with the design and validation of

IQMIS and presented the results. Evaluation of IQMIS shows that it is able to

provide fair access to storage, control latency close to the SLO and provide high

throughput than best effort. Empirical results show that when using IQMIS

Latency is reduced by a factor of 2X as compared to best effort. Throughput is

improved by 2000kb/s for high priority users. Experiments further show an

improvement in convergence time to 10 seconds as compared to the best effort

and existing solutions 30 seconds. IQMIS was found to provide strong

233

performance isolation, superior latency, throughput and jitter compared to Best

Effort. Although prioritization would result in starvation, however the dynamic

nature of IQMIS and reservations to users is able to prevent starvation. More

over IQMIS is able to provide end to end prioritization of users in an

environment of variable workloads like IPSANS. IQMIS can be used to provide

end to end QOS control solution in IPSANS. Ultimately IQMIS can be used as

a catalyst for developing frameworks and techniques for providing end to end

QOS in IPSANS.

7.2 Future Work

This study opens several interesting avenues for future research that we would

recommend. In future the researchers would also like to explore techniques of

using performance isolation in providing availability and reliability guarantees.

In addition the authors of this thesis would like to recommend the use of the

proposed techniques of performance isolation and HPDDRR technique Non

storage systems. Finally the thesis would like to recommend the use of the

integrated QOS management technique in providing building blocks to

implement application based QOS.

7.3 Publications

7.3.1 First Original Research Article Publication Titled

“An Enhanced List Based Packet Classifier for Performance Isolation in

Internet Protocol Storage Area Networks” as shown in Appendix D

234

7.3.1 Second Original Research Article Publication Titled

“HPDDRR: Optimized Scheduler Shaper for Bandwidth Management and

Traffic Shaping in Internet Protocol Storage Area Networks” as shown in

Appendix E.

235

REFERENCES

Acharya, S., Member, S., Znati, T., & Member, S. (2008). Architectures and

Algorithms to aid Firewall Optimization. International Journal of

Computer Applications, 6(1), 1–16.

Acharya, S., Wang, J., Ge, Z., Znati, T., & Greenberg, A. (2006, April).

Simulation study of firewalls to aid improved performance. In 39th Annual

Simulation Symposium (ANSS'06) (pp. 8-pp). IEEE.

Ademaj, F., & Bernhard, H. P. (2022). Quality-of-Service-Based Minimal

Latency Routing for Wireless Networks. IEEE Transactions on Industrial

Informatics, 18(3), 1811–1822. https://doi.org/10.1109/TII.2021.3071596

Akbar, F., Yektakhah, B., Xu, H., & Sarabandi, K. (2021). A Low-Complexity

Time-Domain Method for a Fast and Accurate Measurement of Q-Factor

and Resonant Frequency of RF and Microwave Resonators. IEEE Access,

9, 96478–96486. https://doi.org/10.1109/ACCESS.2021.3094409

Ali, B. S., & Chen, K. (2019). Towards Efficient , Work-Conserving , and Fair

Bandwidth Guarantee in Cloud Datacenters. IEEE Access, 7, 109134–

109150. https://doi.org/10.1109/ACCESS.2019.2930888

Aljoby, W., Wang, X., Fu, T. Z., & Ma, R. T. (2019). On SDN-enabled online

and dynamic bandwidth allocation for stream analytics. IEEE Journal on

Selected Areas in Communications, 37(8), 1688-1702.

Alkharasani, A. M., Othman, M., Abdullah, A., & Lun, K. Y. (2017). An

Improved Quality-of-Service Performance Using RED’s Active Queue

Management Flow Control in Classifying Networks. IEEE Access, 5,

24467-24478.

Almesberger, W. (1999). Linux Network Traffic Control Implementation

Overview. Available at EPFL ICA http://diffserv. sourceforge. net.

Almutairi, M., Stahl, F., & Bramer, M. (2021). ReG-Rules: An Explainable

Rule-Based Ensemble Learner for Classification. IEEE Access, 9, 52015–

52035. https://doi.org/10.1109/ACCESS.2021.3062763

Alvarez, I., Moutinho, L., Pedreiras, P., Bujosa, D., Proenza, J., & Almeida, L.

(2020). Comparing Admission Control Architectures for Real-Time

Ethernet. IEEE Access, 8(ii), 105521–105534.

https://doi.org/10.1109/ACCESS.2020.2999817

Amid, A., Biancolin, D., Gonzalez, A., Grubb, D., Karandikar, S., Liew, H., …

Nikolic, B. (2020). Chipyard: Integrated Design, Simulation, and

Implementation Framework for Custom SoCs. IEEE Micro, 40(4), 10–21.

https://doi.org/10.1109/MM.2020.2996616

Amjad, A. (2019).Analysis of QoS in Different Application by using Opnet

Workbench. International Journal of Advancements in Technology,10(1),

1–6. https://doi.org/10.4172/0976-4860.1000221

236

Azadegan, M., & Beheshti, M. T. H. (2014, December). PID-type congestion

controller design for TCP networks. In 2014 IEEE Conference on Systems,

Process and Control (ICSPC 2014) (pp. 7-12). IEEE.

Baskaran, S. B. M., Raja, G., Bashir, A. K., & Murata, M. (2017). QoS-aware

frequency-based 4G+ relative authentication model for next generation

LTE and its dependent public safety networks. IEEE Access, 5, 21977-

21991.

Baidya, S., Chen, Y., & Levorato, M. (2018, April). eBPF-based content and

computation-aware communication for real-time edge computing. In IEEE

INFOCOM 2018-IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS) (pp. 865-870). IEEE.

Baklizi, M., & Ababneh, J. (2016). Performance Evaluation of the Proposed

Enhanced Adaptive Gentle Random Early Detection Algorithm in

Congestion Situations. International Journal of Current Engineering and

Technology, 6(5), 1658-1664.

Balan, D. G., Potorac, A. D., & Graur, A. (2015). IPV6 EXTENSION OF HTB-

TOOLS FOR LINUX TRAFFIC CONTROL BASED ON HTB. Acta

Technica Napocensis, 56(3), 48.

Balogun, G. B. (2019). A Modified Linear Search Algorithm. African Journal

of Computing & ICT, 12(2), 43-54.

Bangquan, X. I. E., & Xiong, W. X. (2019). Real-Time Embedded Traffic Sign

Recognition Using Efficient Convolutional Neural Network. IEEE Access,

7, 53330–53346. https://doi.org/10.1109/ACCESS.2019.2912311

Barzegar, B., & Fatehi, S. (2022). An Efficient Hybrid Ranking Method for

Cloud Computing Services Based on User Requirements. IEEE Access,

10(June), 72988–73004. https://doi.org/10.1109/ACCESS.2022.3189172

Bassi, M. A., Lopez, M. A., Confalone, L., Gaudio, R. M., Lombardo, L., &

Lauritano, D. (2020). Enhanced Reader.pdf. Nature, Vol. 388, pp. 539–

547.

Berger, A. W., & Whitt, W. (1998). Effective bandwidths with priorities.

IEEE/ACM Transactions on Networking, 6(4), 447–460.

https://doi.org/10.1109/90.720887

Bhaumik, M., Saha, S., & Das, S. (2016). A new modified linear search.

International Journal of Computer Applications .2,85-

86.https://doi.org/10.13140/RG.2.2.12687.38560

237

Bigang, L. I., Jiwu, S. H. U., & Weimin, Z. (2006). SCSI Target Simulator

Based on FC and IP Protocols in TH-MSNS Tsinghua Science and

Technology, 11(5), 589-596.

Billaud, J. P., & Gulati, A. (2013, April). hClock: Hierarchical QoS for packet

scheduling in a hypervisor. In Proceedings of the 8th ACM European

Conference on Computer Systems (pp. 309-322).

Binder, R. V. (2018). Optimal scheduling for combinatorial software testing and

design of experiments. Proceedings - 2018 IEEE 11th International

Conference on Software Testing, Verification and Validation Workshops,

ICSTW 2018, 295–301. https://doi.org/10.1109/ICSTW.2018.00063

Biswas, S. (2010). Network storage and its future. International Journal of

Computer Science and Information Technologies, 1(4), 235–239.

Blenk, A., Kellerer, W., & Schmid, S. (2019). On The Impact of the Network

Hypervisor on Virtual Network Performance. 2019 IFIP Networking

Conference (IFIP Networking), 1–9.

Bonati, L., Johari, P., Polese, M., D’Oro, S., Mohanti, S., Tehrani-Moayyed,

M., … Melodia, T. (2021). Colosseum: Large-Scale Wireless

Experimentation Through Hardware-in-The-Loop Network Emulation.

2021 IEEE International Symposium on Dynamic Spectrum Access

Networks, DySPAN 2021, 105–113.

https://doi.org/10.1109/DySPAN53946.2021.9677430

Bora, G., Bora, S., Singh, S., & Arsalan, S. M. (2014). OSI reference model:

An overview. International Journal of Computer Trends and Technology

(IJCTT), 7(4), 214-218.

Border, D. (2018, June). Performance of a Linux-based Network Router.

In 2018 ASEE Annual Conference & Exposition.

Bosk, M., Gajić, M., Schwarzmann, S., Lange, S., & Zinner, T. (2021).

HTBQueue: A Hierarchical Token Bucket Implementation for the

OMNeT++/INET Framework. arXiv e-prints, arXiv-2109.

Brahneborg, D., Duvignau, R., Afzal, W., Mubeen, S., & Member, S. (2022).

GeoRep — Resilient Storage for Wide Area Networks. IEEE Access,

10(April), 75772–75788. https://doi.org/10.1109/ACCESS.2022.3191686

Brown, M. A. (2006). Traffic Control HOWTO. htp://linux-

ip.net/articles/Trafic-Control-HOWTO/.

Bryman, A., Becker, S., Sempik, J., Bryman, A., Becker, S., & Sempik, J.

(2008). Qualitative and Mixed Methods Research : A View from Social

Policy Quality Criteria for Quantitative , Qualitative and Mixed Methods

Research : A View from Social Policy. (July 2013), 37–41.

https://doi.org/10.1080/13645570701401644

Cedillo, P., Insfran, E., Abrahao, S., & Vanderdonckt, J. (2021). Empirical

Evaluation of a Method for Monitoring Cloud Services Based on Models

238

at Runtime. IEEE Access, 9, 55898–55919.

https://doi.org/10.1109/ACCESS.2021.3071417

Celik, A., Radaydeh, R. M., Al-Qahtani, F. S., & Alouini, M. S. (2017).

Resource allocation and interference management for D2D-enabled

DL/UL decoupled Het-Nets. IEEE Access, 5, 22735-22749.

Chambliss, D. D., Alvarez, G. A., Pandey, P., Jadav, D., Xu, J., Menon, R., &

Lee, T. P. (2003, October). Performance virtualization for large-scale

storage systems. In 22nd International Symposium on Reliable Distributed

Systems, 2003. Proceedings. (pp. 109-118). IEEE.

Chang, W., Wu, C., & Lin, Y. (2018). Efficient Time-Slot Adjustment and

Packet-Scheduling Algorithm for Full-Duplex Multi-Hop Relay-Assisted

mmWave Networks. IEEE Access, 6, 39273–39286.

https://doi.org/10.1109/ACCESS.2018.2856867

Cherian, M., & Chatterjee, M. (2016). Optimized Firewall with Traffic

Awareness. Int. J. Comput. Networks Appl, 3(2), 32-37.

Chin, K. (2021). Joint Trajectory and Link Scheduling Optimization in UAV

Networks. IEEE Access, 9, 84756–84772.

https://doi.org/10.1109/ACCESS.2021.3086954

Chin, T., Xiong, K., & Hu, C. (2018). Phishlimiter : A Phishing Detection and

Mitigation Approach Using Software-Defined Networking. IEEE Access,

6, 42516–42531. https://doi.org/10.1109/ACCESS.2018.2837889

Chinmay, V., & Rishabh, G. (2015). A review paper on OSI Model-a seven

layered architecture of OSI Model. International Journal of Innovative

Research in Technology IJIRT, 1(12).

Chiu, C. H., Singh, D. K., Wang, Q., Lee, K., & Park, S. J. (2017, June).

Minimal coflow routing and scheduling in openflow-based cloud storage

area networks. In 2017 IEEE 10th International Conference on Cloud

Computing (CLOUD) (pp. 222-229). IEEE.

Chomsiri, T., He, X., & Nanda, P. (2012, November). Limitation of listed-rule

firewall and the design of tree-rule firewall. In International Conference

on Internet and Distributed Computing Systems (pp. 275-287). Springer,

Berlin, Heidelberg.

Coleman, P. (2022). Validity and Reliability within Qualitative Research for.

International Journal of Caring Sciences, 14(3), 2041–2045.

Consolini, L., Locatelli, M., Minari, A., Nagy, A., & Vajk, I. (2019). Optimal

Time-Complexity Speed Planning for Robot Manipulators. IEEE

Transactions on Robotics, 35(3), 790–797.

https://doi.org/10.1109/TRO.2019.2899212

Cos, W. (2012). CoS and QoS - Managing Bandwidth , Complexity , and Cost.

239

PKE Consulting. http://www.pkeconsulting.com/pkecqos.pdf.

Council, S. P., & City, R. (2019). Policies and Guidelines of the Storage

Performance Council. Storage Performance Council.

Cui, Y., Dai, N., Lai, Z., Li, M., Li, Z., Hu, Y., … Chen, Y. (2019). TailCutter:

Wisely cutting tail latency in cloud CDNs under cost constraints.

IEEE/ACM Transactions on Networking, 27(4), 1612–1628.

https://doi.org/10.1109/TNET.2019.2926142

Dahan, F. (2021). An Effective Multi-Agent Ant Colony Optimization

Algorithm for QoS-Aware Cloud Service Composition. IEEE Access, 9,

17196–17207. https://doi.org/10.1109/ACCESS.2021.3052907

Dahan, F., Binsaeedan, W., Altaf, M., Al-Asaly, M. S., & Hassan, M. M. (2021).

An Efficient Hybrid Metaheuristic Algorithm for QoS-Aware Cloud

Service Composition Problem. IEEE Access, 9, 95208–95217.

https://doi.org/10.1109/ACCESS.2021.3092288

Dahan, F., Hindi, K. El, Ghoneim, A., & Alsalman, H. (2021). An Enhanced

Ant Colony Optimization Based Algorithm to Solve QoS-Aware Web

Service Composition. IEEE Access, 9(3), 34098–34111.

https://doi.org/10.1109/ACCESS.2021.3061738

Dainotti, A., Pescape, A., & Claffy, K. C. (2012). Issues and future directions

in traffic classification. IEEE network, 26(1), 35-40.

Danielsson, J., Seceleanu, T., Jagemar, M., Behnam, M., & Sjodin, M. (2019).

Testing Performance-Isolation in Multi-Core Systems. 2019 IEEE 43rd

Annual Computer Software and Applications Conference (COMPSAC), 1,

604–609. https://doi.org/10.1109/COMPSAC.2019.00092

Dapeng, J. U., Chuanyi, L. I. U., & Dongsheng, W. (2010). Performance

Comparison of IP-Networked Storage.Tsinghua Science and

Technology, 14(1), 29-40.

Datsika, E., Kartsakli, E., Vardakas, J. S., Antonopoulos, A., Kalfas, G., &

Informatica, S. L. (2018). QoS-aware resource management for converged

Fiber Wireless 5G Fronthaul networks. 2018 IEEE Global

Communications Conference (GLOBECOM), 1–5.

De Rango, F., & Fazio, P. (2022). A Stochastic Approach for Resource

Prediction Error and Bandwidth Wastage Evaluation in Advanced

Dynamic Reservation Strategies. IEEE Transactions on Mobile

Computing, 1–1. https://doi.org/10.1109/tmc.2022.3176046

De Sio, C., Azimi, S., & Sterpone, L. (2020). An Emulation Platform for

Evaluating the Reliability of Deep Neural Networks. 33rd IEEE

International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems, DFT 2020, 2020–2023.

https://doi.org/10.1109/DFT50435.2020.9250872

Dhabake, K. A. (2016). Study On-Comparison between IP SAN and FC SAN.

240

International Journal of Computer Science Trends and Technology

(IJCST), 4(4), 157–160.

Ding, W., Niu, Y., & Wu, H. A. O. (2018). QoS-Aware Full-Duplex Concurrent

Scheduling for Millimeter Wave Wireless Backhaul Networks. IEEE

Access, 6, 25313–25322. https://doi.org/10.1109/ACCESS.2018.2828852

Dong, P., Xie, J., Tang, W., Zhong, H. U. A., & Vasilakos, A. V. (2019).

Performance Evaluation of Multipath TCP Scheduling Algorithms. IEEE

Access, 7, 29818–29825. https://doi.org/10.1109/ACCESS.2019.2898110

El-Atawy, A., Samak, T., Al-Shaer, E., & Hong, L. (2007). Using online traffic

statistical matching for optimizing packet filtering performance.

Proceedings - IEEE INFOCOM, 866–874.

https://doi.org/10.1109/INFCOM.2007.106

Eramo, V. (2019). Optimizing the Cloud Resources , Bandwidth and

Deployment Costs in Multi-Providers Network Function Virtualization

Environment. IEEE Access, 7(Vm), 46898–46916.

https://doi.org/10.1109/ACCESS.2019.2908990

Ezdiani, S., & Al-Anbuky, A. (2015). Modelling the integrated QoS for wireless

sensor networks with heterogeneous data traffic. Open Journal of Internet

Of Things (OJIOT), 1(1), 1-15.

Fahad, A., Alharthi, K., Tari, Z., Almalawi, A., & Khalil, I. (2014). CluClas :

Hybrid Clustering-Classification Approach for Accurate and Efficient

Network Classification. 39th Annual IEEE Conference on Local Computer

Networks, 168–176. https://doi.org/10.1109/LCN.2014.6925769

Fang, C. H., Shen, L. H., Huang, T. P., & Feng, K. Ten. (2021). Delay-Aware

Admission Control and Beam Allocation for 5G Functional Split Enhanced

Millimeter Wave Wireless Fronthaul Networks. IEEE Transactions on

Wireless Communications, PP, 1.

https://doi.org/10.1109/TWC.2021.3112299

Fang, J., Rao, Y., Liu, P., & Zhao, X. (2021). Sequence Transfer-Based Particle

Swarm Optimization Algorithm for Irregular Packing Problems. IEEE

Access, 9, 131223–131235.

https://doi.org/10.1109/ACCESS.2021.3114331

Fang, X., Chen, J., Ye, F., Feng, D., & Li, J. (2015, August). Introduction of

metadata-request queue with immediate response for I/O path

optimizations on iSCSI-based storage subsystem. In 2015 IEEE

International Conference on Networking, Architecture and Storage

(NAS) (pp. 100-105). IEEE.

Fang, Z., Qiu, Q., Ding, Y., & Ding, L. (2018). A QoS Guarantee Based Hybrid

Media Access Control Protocol of Aeronautical Ad Hoc Network. IEEE

Access, 6, 5954–5961. https://doi.org/10.1109/ACCESS.2017.2775342

Favraud, R., Chang, C. Y., & Nikaein, N. (2018). Autonomous Self-Backhauled

241

LTE Mesh Network with QoS Guarantee. IEEE Access, 6, 4083–4117.

https://doi.org/10.1109/ACCESS.2018.2794333

Ferrera, L. E., & Niguidula, J. (2017). An analysis of latency, jitter and packet

loss in a network with telepresence system. International Journal of

Advanced Computational Engineering and Networking, (6), 33–37.

Ganesh, A., Sudarsan, A., Vasu, A. K., & Ramalingam, D. (2014). Improving

Firewall performance by using a cache table. International Journal of

Advances in Engineering & Technology, 7(5), 1.

Gaonkar, P. E., Bojewar, S., & Das, J. A. (2013). A survey: data storage

technologies. Int. J. Eng. Sci. Innov. Technol, 2, 547-554.

Garg, S., & Dixit, A. (2021). Bin-Packing-Based Online Dynamic Bandwidth

and Wavelength Allocation Algorithm in Super-PON. IEEE Access, 9,

139379–139392. https://doi.org/10.1109/ACCESS.2021.3118461

Garroppo, R. G., Giordano, S., Lucetti, S., & Valori, E. (2005, June). The

wireless hierarchical token bucket: a channel aware scheduler for 802.11

networks. In Sixth IEEE International Symposium on a World of Wireless

Mobile and Multimedia Networks (pp. 231-239). IEEE.

Gauger, C. M., Kohn, M., Gunreben, S., Sass, D., & Perez, S. G. (2005,

October). Modeling and performance evaluation of iSCSI storage area

networks over TCP/IP-based MAN and WAN networks. In 2nd

International Conference on Broadband Networks, 2005. (pp. 850-858).

IEEE.

Gemieux, M., Li, M., Savaria, Y., David, J. P., & Zhu, G. (2018). A Hybrid

Architecture With Low Latency Interfaces Enabling Dynamic Cache

Management. IEEE Access, 6, 62826-62839.

Ghazal, S., Ben Othman, J., & Claudé, J. P. (2012). Traffic management based

on token bucket mechanism for WiMAX networks. Cluster

Computing, 15(4), 391-400.

Ghezzi, A., Milano, P., Agiatzidou, E., Johanses, F. T., Milano, P., & Milano,

P. (2014). Internet Interconnection Techno-Economics : A Proposal for

Assured Quality Services and Business Models.

https://doi.org/10.1109/HICSS.2014.95

Gode, N., Kashalkar, R., Kale, D., & Bhingarkar, S. (2014). Feature-based

Comparison of iSCSI Target Implementations. International Journal of

Computer Applications, 85(16), 13–16. https://doi.org/10.5120/14923-

3438

Gómez, C. (2020). Complexity and time. Physical Review D, 101(6), 1–8.

https://doi.org/10.1103/PhysRevD.101.065016

Greener, S. (2008). Business Research Methods.[e-book] Dr. In Sue Greener

and Ventus Publishing ApS. Available through:< http://www. bookbon.

com>[Accessed 9 May 2019]. Retrieved from

242

http://gent.uab.cat/diego_prior/sites/gent.uab.cat.diego_prior/files/02_e_0

1_introduction-to-research-methods.pdf

Gu, L., Zeng, D., Tao, S., Guo, S., Jin, H., Zomaya, A. Y., & Zhuang, W. (2019).

Fairness-Aware Dynamic Rate Control and Flow Scheduling for Network

Utility Maximization in Network Service Chain. IEEE Journal on Selected

Areas in Communications, 37(5), 1059–1071.

https://doi.org/10.1109/JSAC.2019.2906746

Gu, Y. U., Cui, Q., Chen, Y. U., Ni, W. E. I., Tao, X., & Zhang, P. (2018).

Effective Capacity Analysis in Ultra-Dense Wireless Networks With

Random Interference. 6, 19499–19508.

https://doi.org/10.1109/ACCESS.2018.2820901

Guck, J. W., Van Bemten, A., & Kellerer, W. (2017). DetServ: Network models

for real-time QoS provisioning in SDN-based industrial

environments. IEEE Transactions on Network and Service

Management, 14(4), 1003-1017.

Guido-Sanz, F., Anderson, M., Talbert, S., Diaz, D. A., Welch, G., & Tanaka,

A. (2022). Using Simulation to Test Validity and Reliability of I-BIDS: A

New Handoff Tool. Simulation and Gaming, 53(4), 353–368.

https://doi.org/10.1177/10468781221098567

Gulati, A., Merchant, A., & Varman, P. J. (2007). pClock: an arrival curve based

approach for QoS guarantees in shared storage systems. ACM

SIGMETRICS Performance Evaluation Review, 35(1), 13-24.

Gulati, A., Shanmuganathan, G., Zhang, X., & Varman, P. (2019). Demand

based hierarchical QoS using storage resource pools. Proceedings of the

2012 USENIX Annual Technical Conference, USENIX ATC 2012, 1–13.

Gulati, A., Merchant, A., & Varman, P. J. (2010). mClock: Handling

Throughput Variability for Hypervisor IO Scheduling. In 9th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 10).

Gulati, A., Ahmad, I., & Waldspurger, C. A. (2009, February). PARDA:

Proportional Allocation of Resources for Distributed Storage Access.

In FAST (Vol. 9, pp. 85-98).

Gulder, S., & Déziel, M. (2003, November). Quality of Service Mechanism for

MANET using Linux. In Proc. INSC Symposium, NATO C3 Agency.

Guo, H. B., & Kuo, G. S. (2005, May). A dynamic and adaptive bandwidth

management scheme for QoS support in wireless multimedia networks.

In 2005 IEEE 61st Vehicular Technology Conference (Vol. 3, pp. 2081-

2085). IEEE.

Guo, I., Langrené, N., Loeper, G., & Ning, W. (2021). Robust utility

maximization under model uncertainty via a penalization approach.

Mathematics and Financial Economics, (2013), 1–33.

https://doi.org/10.1007/s11579-021-00301-5

243

Guo, L. (2019). Personalized QoS Prediction for Service Recommendation

With a Service- Oriented Tensor Model. IEEE Access, 7, 55721–55731.

https://doi.org/10.1109/ACCESS.2019.2912505

Haghighi, A. L. I. A., & Heydari, S. S. (2018). Dynamic QoS-Aware Resource

Assignment in Cloud-Based Content-Delivery Networks. IEEE Access, 6,

2298–2309. https://doi.org/10.1109/ACCESS.2017.2782776

Hamed, H., & Al-Shaer, E. (2006, March). Dynamic rule-ordering optimization

for high-speed firewall filtering. In Proceedings of the 2006 ACM

Symposium on Information, computer and communications security (pp.

332-342).

Han, K. A. I., Li, S., Tang, S., Huang, H., & Zhao, S. (2018). Application-

Driven End-to-End Slicing : When Wireless Network Virtualization

Orchestrates With NFV-Based Mobile Edge Computing. IEEE Access, 6,

26567–26577. https://doi.org/10.1109/ACCESS.2018.2834623

Han, W., Xue, J., & Yan, H. (2019). Detecting anomalous traffic in the

controlled network based on cross entropy and support vector

machine. IET Information Security, 13(2), 109-116.

https://doi.org/10.1049/iet-ifs.2018.5186

Hao, M., Li, H., Tong, M. H., Pakha, C., Suminto, R. O., Stuardo, C. A., ... &

Gunawi, H. S. (2017, October). MittOS: Supporting millisecond tail

tolerance with fast rejecting SLO-aware OS interface. In Proceedings of

the 26th Symposium on Operating Systems Principles (pp. 168-183).

Hashemian, R., Carlsson, N., Krishnamurthy, Di., & Arlitt, M. (2020).

Contention aware web of things emulation testbed. ICPE 2020 -

Proceedings of the ACM/SPEC International Conference on Performance

Engineering, 246–256. https://doi.org/10.1145/3358960.3379140

Hassan, M. M., Albakr, H., Al-Dossari, H., & Mohamed, A. (2017). Resource

provisioning for cloud-assisted body area network in a smart home

environment. IEEE Access, 5, 13213-13224.

He, L., Member, S., Wang, J., & Member, S. (2017). Bandwidth Efficiency

Maximization for Single-Cell Massive Spatial Modulation MIMO : An

Adaptive Power Allocation Perspective. IEEE Access, 5, 1482–1495.

https://doi.org/10.1109/ACCESS.2017.2668420

He, X., Chomsiri, T., Nanda, P., & Tan, Z. (2013). Improving cloud network

security using the Tree-Rule firewall. Future Generation Computer

Systems. https://doi.org/10.1016/j.future.2013.06.024

He, X., Chomsiri, T., Nanda, P., & Tan, Z. (2014). Improving cloud network

security using the Tree-Rule firewall. Future generation computer

systems, 30, 116-126. https://doi.org/10.1016/j.future.2013.06.024

He, Y., Tang, L., & Ren, Y. (2019). Maximizing sleeping capacity based on

QoS provision for information-centric Internet of Things. IEEE Access, 7,

244

111084-111094.

Hehman, E., Calanchini, J., Flake, J. K., & Leitner, J. B. (2019). Establishing

construct validity evidence for regional measures of explicit and implicit

racial bias. Journal of Experimental Psychology: General, 148(6), 1022–

1040. https://doi.org/10.1037/xge0000623

Hemke, M. S. V, Gawande, A. D., Gautum, P. L. K., & Email, W. S. (2013).

ISCSI-The Future of the Storage Network. IEEE Access, 2(4), 235–240.

https://doi.org/10.1109/access.2022.3180491

Hewage, C. T. E. R., Ahmad, A., Mallikarachchi, T., Barman, N., & Martini,

M. G. (2022). Measuring, Modeling and Integrating Time-Varying Video

Quality in End-to-End Multimedia Service Delivery: A Review and Open

Challenges. IEEE Access, 10, 60267–60293.

https://doi.org/10.1109/access.2022.3180491

Hirose, M., & Cappellaro, P. (2018). Time-optimal control with finite

bandwidth. Quantum Information Processing, 17(4), 1–8.

https://doi.org/10.1007/s11128-018-1845-6

Hou, R., Chang, Y., & Yang, L. (2017). Multi‐constrained QoS routing based

on PSO for named data networking. IET Communications, 11(8), 1251-

1255.

Huang, L., Chen, H. S., & Hu, T. T. (2013). Survey on Resource Allocation

Policy and Job Scheduling Algorithms of Cloud Computing1. J.

Softw., 8(2), 480-487.

Huang, S., Yuan, D., & Ephremides, A. (2019). Bandwidth Partition and

Allocation for Efficient Spectrum Utilization in Cognitive

Communications. Journal of Communications and Networks, 21(4), 353–

364. https://doi.org/10.1109/JCN.2019.000031

Huang, Xiaoge, Cao, C., Li, Y., & Chen, Q. (2020). Opportunistic Resource

Scheduling for LTE-Unlicensed With Hybrid Communications Modes.

IEEE Access, 6, 47857–47869.

https://doi.org/10.1109/ACCESS.2018.2867427

Huang, Xiaohong, Yuan, T., & Ma, M. (2018). Utility-Optimized Flow-Level

Bandwidth Allocation in Hybrid SDNs. IEEE Access, 6, 20279–20290.

https://doi.org/10.1109/ACCESS.2018.2820682

Huang, X., Yang, K., Wu, F., & Leng, S. (2017). Power control for full-duplex

relay-enhanced cellular networks with QoS guarantees. IEEE Access, 5,

4859-4869.

Hwang, Z. H. (2014). Benchmarking of IP-based Network Storage

Systems (Master's thesis). Aalto University.

Inumula, K. M. (2015). Exploring causal relations in data mining by using

directed acyclic graphs (dag). International Journal of Advance

245

Computational Engineering and Networking (IJACEN).(5), 49–55.

Iswadi, D., Adriman, R., & Munadi, R. (2019, August). Adaptive switching

PCQ-HTB algorithms for bandwidth management in routerOS. In 2019

IEEE international conference on cybernetics and computational

intelligence (CyberneticsCom) (pp. 61-65). IEEE.

Iswadi, D., Adriman, R., & Munadi, R. (2019a). Adaptive Switching PCQ-HTB

Algorithms for Bandwidth Management in RouterOS. Proceedings:

CYBERNETICSCOM 2019 - 2019 IEEE International Conference on

Cybernetics and Computational Intelligence: Towards a Smart and

Human-Centered Cyber World, 61–65.

https://doi.org/10.1109/CYBERNETICSCOM.2019.8875679

Jacob, E., & Jaswal, S. (2017, May). Optimized utilization of disks in storage

area network by storage tiering. In 2017 International Conference on

Computing, Communication and Automation (ICCCA) (pp. 637-640).

IEEE.

Jaichandra, S., & Prasannakumar, K. R. (2015). A Case Study on Different SAN

Technologies – FC SAN and IP SAN. International Journal of Science,

Engineering and Technology Research (IJSETR). 4(6), 2211–2214.

Jaiman, V., Mokhtar, S. Ben, Quéma, V., Chen, L., Jaiman, V., Mokhtar, S.

Ben, … Tam-, E. R. H. (2018). Héron : Taming Tail Latencies in Key-

Value Stores under Heterogeneous Workloads To cite this version : HAL

Id : hal-01896686 H ´ eron : Taming Tail Latencies in Key-Value Stores

under Heterogeneous Workloads.

Jaiman, V., Mokhtar, S. Ben, Quéma, V., Chen, L. Y., & Rivière, E. (2019).

Héron: Taming tail latencies in key-value stores under heterogeneous

workloads. Proceedings of the IEEE Symposium on Reliable Distributed

Systems, 2019-Octob, 191–200.

https://doi.org/10.1109/SRDS.2018.00030

Jalodia, N., Taneja, M., & Davy, A. (2021). A Deep Neural Network-Based

Multi-Label Classifier for SLA Violation Prediction in a Latency Sensitive

NFV Application. IEEE Open Journal of the Communications Society,

2(November), 2469–2493.

https://doi.org/10.1109/OJCOMS.2021.3122844

Jamali, S., Alipasandi, N., & Alipasandi, B. (2014). An improvement over

random early detection algorithm: a self-tuning approach. Journal of

Electrical and Computer Engineering Innovations (JECEI), 2(2), 57-61.

Jamaluddin, M. H. (2019). Singly-Fed Rectangular Dielectric Resonator

Antenna With a Wide Circular Polarization Bandwidth and Beamwidth for

WiMAX / Satellite Applications. IEEE Access, 7, 66206-66214.

James, A., & Shaikh, S. (2019). A New Architecture for Network Intrusion

Detection and Prevention. IEEE Access, 7, 18558–18573.

https://doi.org/10.1109/ACCESS.2019.2895898

246

Ji, Y., & Member, S. (2018). Reconfigurable Optical OFDM Datacenter

Datacenter Networks. IEEE Photonics Journal, 10(5), 1–16.

https://doi.org/10.1109/JPHOT.2018.2859275

Jia, G., Han, G., Zhang, D., Liu, L., & Shu, L. (2015). An Adaptive Framework

for Improving Quality of Service in Industrial Systems. IEEE Access, 3,

2129–2139. https://doi.org/10.1109/ACCESS.2015.2496959

Jiang, J. W. (2012). Wide-Area Traffic Management for Cloud

Services (Doctoral dissertation).Princeton University.

Jin, X. I., Xia, C., & Guan, N. A. N. (2020). Real-Time Scheduling of Massive

Data in Time Sensitive Networks With a Limited Number of Schedule

Entries. IEEE Access, 8, 6751–6767.

https://doi.org/10.1109/ACCESS.2020.2964690

Jose-Ignacio, C. V., Serrano-Martinez, D. J., & Monica, H. (2019).

Management Emulation for Advanced Networks Interconection in all

America: 2019 topology. 2019 IEEE 39th Central America and Panama

Convention, CONCAPAN 2019, 2019-Novem.

https://doi.org/10.1109/CONCAPANXXXIX47272.2019.8976946

Jurkiewicz, P., Biernacka, E., Domzal, J., & Wojcik, R. (2021). Empirical Time

Complexity of Generic Dijkstra Algorithm. Proceedings of the IM 2021 -

2021 IFIP/IEEE International Symposium on Integrated Network

Management, (Im), 594–598.

Kailong, Z., Min, W., Hang, S., Ansheng, Y., Fortelle, A. D. La, & Kejian, M.

(2017). QoS-CITS : A Simulator for Service-oriented Cooperative ITS of

Intelligent Vehicles *. 2017 IEEE/ACIS 16th International Conference on

Computer and Information Science (ICIS), 751–756.

https://doi.org/10.1109/ICIS.2017.7960093

Kalav, D., & Gupta, S. (2012). Congestion control in communication network

using RED, SFQ and REM algorithm. International Refereed Journal of

Engineering and Science, 1(2), 41-45.

Karlsson, M., Karamanolis, C., & Zhu, X. (2005). Triage: Performance

Differentiation for Storage Systems Using Adaptive Control. ACM

Transactions on Storage, 1(4), 457–480.

https://doi.org/10.1145/1111609.1111612

Keller A. (2006). Manual TC Packet Filtering and netem - tcn.hypert.net.

Retrieved September 10, 2022, from http://tcn.hypert.net/tcmanual.pdf

Khadir, K., Guermouche, N., Guittoum, A., & Monteil, T. (2022). A Genetic

Algorithm-Based Approach for Fluctuating QoS Aware Selection of IoT

Services. IEEE Access, 10, 17946–17965.

https://doi.org/10.1109/ACCESS.2022.3145853

Khakurel, S., & Musavian, L. (2018). QoS-Aware Utility-Based Resource

247

Allocation in Mixed-Traffic Multi-User OFDM Systems. IEEE Access, 6,

21646–21657. https://doi.org/10.1109/ACCESS.2018.2823004

Khalid, P. S., & Hashim, W. (2014). System Performance of Adaptive

Bandwidth Traffic Shaping Mechanism for Residential Safety

System. Lecture Notes on Information Theory Vol, 2(2)

https://doi.org/10.12720/lnit.2.2.141-145

Khan, R., Member, S., & Alam, M. M. (2022). Throughput and Channel Aware

MAC Scheduling for SmartBAN Standard. IEEE Access, 7, 63133–63145.

https://doi.org/10.1109/ACCESS.2019.2916159

Kim, T., Kwon, T., Lee, J. U. N., & Song, J. (2021). F / Wvis : Hierarchical

Visual Approach for Effective Optimization of Firewall Policy. IEEE

Access, 9, 105989–106004.

https://doi.org/10.1109/ACCESS.2021.3100141

Kothari C.R. (2004). Research Methodology Methods and Techniques. 2nd

revised Edition.New Age International Limited Publishers.

Kotian, P. P., Shetty, V. K., & Begum, S. (2017). Study on Different Mechanism

for Congestion Control in Real Time Traffic for MANETS. International

Research Journal of Engineering and Technology (IRJET), 4(11), 1627-

1631.

Kourtessis, P., Lim, W., Merayo, N., Yang, Y., & Senior, J. M. (2019). Efficient

T-CONT-Agnostic Bandwidth and Wavelength Allocation for NG-PON2.

IEEE/OSA Journal of Optical Communications and Networking, 11(7),

383–396. https://doi.org/10.1364/JOCN.11.000383

Kozhedub, I., & Air, N. (2018). Mandatory Resource Access Control based on

a Reachability Matrix in Storage Area Networks. 2018 IEEE 9th

International Conference on Dependable Systems, Services and

Technologies (DESSERT), 539–543.

https://doi.org/10.1109/DESSERT.2018.8409191

Kulkarni, S. (2015). Implementation of iSCSI for Mobile Platforms and its

Performance Optimization on Mobile Networks.CUCT 2006 international

Conference, Jeju Island, Korea (pp. 3-5). Springer

Kumar, A., Kim, J., & Suh, S. C. (2015). Incorporating Multiple Cluster Models

for Network Traffic Classification. 2015 IEEE 40th Conference on Local

Computer Networks (LCN), 185–188.

https://doi.org/10.1109/LCN.2015.7366302

Lee, C. H., & Kim, Y. T. (2013). QoS-aware hierarchical token bucket (QHTB)

queuing disciplines for QoS-guaranteed Diffserv provisioning with

optimized bandwidth utilization and priority-based preemption.

International Conference on Information Networking, 351–358.

https://doi.org/10.1109/ICOIN.2013.6496403

Lewis, P., & Thornhill, A. (2019).Research Methods for Business Students. 8th

248

Edition, Pearson, New York

Li, F., Cao, J., Wang, X., & Sun, Y. (2017). A QoS guaranteed technique for

cloud applications based on software defined networking. IEEE access, 5,

21229-21241.

Li, G., Member, S., Wu, J. U. N., & Li, J. (2018). SLA-Aware Fine-Grained

QoS Provisioning for Multi-Tenant Software-Defined Networks. IEEE

Access, 6, 159–170. https://doi.org/10.1109/ACCESS.2017.2761553

Li, N., Jiang, H., Feng, D., & Shi, Z. (2016, April). Pslo: Enforcing the xth

percentile latency and throughput slos for consolidated vm storage.

In Proceedings of the Eleventh European Conference on Computer

Systems (pp. 1-14).

Li, S., Wen, J., & Luo, F. (2018). Time-Aware QoS Prediction for Cloud

Service Recommendation Based on Matrix Factorization. IEEE Access, 6,

77716–77724. https://doi.org/10.1109/ACCESS.2018.2883939

Liang, J., Long, Y., Mei, Y., & Wang, T. (2019). A Distributed Intelligent

Hungarian Algorithm for Workload Balance in Sensor-Cloud Systems

Based on Urban Fog Computing. IEEE Access, 7, 77649–77658.

https://doi.org/10.1109/ACCESS.2019.2922322

Lichtblau, F., Streibelt, F., Krüger, T., Richter, P., & Feldmann, A. (2017,

November). Detection, classification, and analysis of inter-domain traffic

with spoofed source IP addresses. In Proceedings of the 2017 Internet

Measurement Conference (pp. 86-99).

Lim, H., & Choi, S. (2005). Design and implementation of iSCSI-based virtual

storage system for mobile health care. Proceedings of the 7th International

Workshop on Enterprise Networking and Computing in Healthcare

Industry, HEALTHCOM 2005, 37–40.

https://doi.org/10.1109/HEALTH.2005.1500383

Lim, W., Kourtessis, P., Senior, J. M., Na, Y., Allawi, Y., Jeon, S. B., & Chung,

H. (2017). Dynamic bandwidth allocation for OFDMA-PONs using hidden

Markov model. IEEE Access, 5, 21016-21019.

Lin, S., Che, N., Jiang, S., & Wei, M. (2019). Toward Delay-Based Utility

Maximization : Modeling and Implementation in an SDWN Platform.

IEEE Access, 7, 185086–185098.

https://doi.org/10.1109/ACCESS.2019.2960772

Lin, Z., & Masa, V. G. (2019). A New Partition-Based Random Search Method

for Deterministic Optimization Problems. 2019 Winter Simulation

Conference (WSC), 3504–3515.

Liu, L., Lu, C., Xiao, F., Liu, R., & Xiong, N. N. (2021). A Practical, Integrated

Multi-Criteria Decision-Making Scheme for Choosing Cloud Services in

Cloud Systems. IEEE Access, 9, 88391–88404.

https://doi.org/10.1109/ACCESS.2021.3089991

249

Liu, X., Li, Z., Xu, P., & Li, J. (2021). Joint Optimization for Bandwidth

Utilization and Delay Based on Particle Swarm Optimization. IEEE

Access, 9, 92125–92133. https://doi.org/10.1109/ACCESS.2021.3091693

Liu, Z., Sun, S., Zhu, H., Gao, J., & Li, J. (2017). BitCuts: A fast packet

classification algorithm using bit-level cutting. Computer

Communications, 109, 38-52.

Liu, Zhigang. (2019). MR-CNN : A Multi-Scale Region-Based Convolutional

Neural Network for Small Traffic Sign Recognition. IEEE Access, 7,

57120–57128. https://doi.org/10.1109/ACCESS.2019.2913882

Liveoptics, F. C., For, P., Lasky, R., By, P., Lasky, R., Optics, L., &

Technology, D. (2019). Performance overview.

https://www.liveoptics.com/

Lopez-martin, M., Member, S., & Carro, B. (2017). Network Traffic Classifier

With Convolutional and Recurrent Neural Networks for Internet of Things.

IEEE Access, 5, 18042–18050.

https://doi.org/10.1109/ACCESS.2017.2747560

Lu, Y., Du, D. H. C., & Ruwart, T. (2005). QoS provisioning framework for an

OSD-based storage system. Proceedings - Twenty -Second

IEEE/Thirteenth NASA Goddard Conference on Mass Storage Systems and

Technologies, 28–35. https://doi.org/10.1109/msst.2005.27

Lumb, C. R. (2003). Façade: Virtual Storage Devices with Performance

Guarantees. In 2nd USENIX Conference on File and Storage Technologies

(FAST 03).

Lv, S., Yi, F., He, P., & Zeng, C. (2022). QoS Prediction of Web Services Based

on a Two-Level Heterogeneous Graph Attention Network. IEEE Access,

10, 1871–1880. https://doi.org/10.1109/ACCESS.2021.3138127

Mahajan, N., & Mahajan, S. (2015). AN EFFICIENT TOKEN BUCKET

ALGORITHM INCREASING WIRELESS. International Journal of

Engineering Research and General Science, V3(3),2091-2730

Malviya, P. (2016). A Study Paper on Storage Area Network Problem-Solving

Issues. I Nternational Journal of Computer Science Trends and

Technology (I J CST), 4(4), 151–156.

Mamman, M., & Hanapi, Z. M. (2017). An Adaptive Call Admission Control

With Bandwidth Reservation for Downlink LTE Networks. IEEE Access,

5, 10986–10994. https://doi.org/10.1109/ACCESS.2017.2713451

Marir, N., Wang, H., Li, B., & Jia, M. (2018). Distributed Abnormal Behavior

Detection Approach Based on Deep Belief Network and Ensemble SVM

Using Spark. IEEE Access, 6, 59657–59671.

https://doi.org/10.1109/ACCESS.2018.2875045

Martins, M. B. P., & Zucchi, W. L. (2015). FCoE and iSCSI Performance

Analysis in Tape Virtualization Systems. IEEE Latin America

250

Transactions, 13(7), 2372-2378.

Mary, N. A. B., & Jayapriya, K. (2014). An extensive survey on QoS in cloud

computing. International Journal of Computer Science and Information

Technologies, 5(1), 1-5.

Mathews, A. B., & Glandevadhas, G. (2020). Improved Proportional Fair

Algorithm for Transportation of 5G Signals in Internet of Medical Things.

International Journal of Innovative Technology and Exploring

Engineering, 9(2), 1810–1814.

https://doi.org/10.35940/ijitee.b7471.129219

Mathews, K., Kramer, C., & Gotzhein, R. (2018). Token bucket based traffic

shaping and monitoring for WLAN-based control systems. IEEE

International Symposium on Personal, Indoor and Mobile Radio

Communications, PIMRC, 2017-Octob, 1–7.

https://doi.org/10.1109/PIMRC.2017.8292201

Mebarkia, K., & Zsóka, Z. (2019). Service traffic engineering: Avoiding link

overloads in service chains. Journal of Communications and

Networks, 21(1), 69-80.

Meth, K. Z., & Satran, J. (2003). Features of the iSCSI protocol. IEEE

Communications Magazine, 41(8), 72–75.

https://doi.org/10.1109/MCOM.2003.1222720

Micha, E., & Shah, N. (2020). Proportionally fair clustering revisited. Leibniz

International Proceedings in Informatics, LIPIcs, 168.

https://doi.org/10.4230/LIPIcs.ICALP.2020.85

Mikac, M., & Horvatić, M. (2019). an Approach for Teaching and

Understanding Computer Networks Using Realistic Emulation Tool.

ICERI2019 Proceedings, 1(November), 1209–1219.

https://doi.org/10.21125/iceri.2019.0371

Misra, S., Oommen, B. J., Yanamandra, S., & Obaidat, M. S. (2009). Random

early detection for congestion avoidance in wired networks: a discretized

pursuit learning-automata-like solution. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 40(1), 66-76.

Mistry, S., Prajapati, J., Patel, M., & Saxena, M. S. S. (2020). NAS (Network

Attached Storage). Journal of Communications and

Networks,65(6),6571–6575.

Murthy, S. K. D. K. N. N. (2015). A Survey of Optimizing the Performance of

iSCSI. International Journal of Science and Research (IJSR), 4(3), 1356–

1359. Retrieved from https://www.ijsr.net/archive/v4i3/SUB152302.pdf

Nahrstedt, K., Arefin, A., Rivas, R., Agarwal, P., Huang, Z., Wu, W., & Yang,

Z. (2011). QoS and resource management in distributed interactive

multimedia environments. Multimedia Tools and Applications, 51(1), 99-

132. https://doi.org/10.1007/s11042-010-0627-7

251

Nam, Y., Choi, Y., Yoo, B., Eom, H., & Son, Y. (2020, May). EdgeIso:

Effective Performance Isolation for Edge Devices. In 2020 IEEE

International Parallel and Distributed Processing Symposium

(IPDPS) (pp. 295-305). IEEE.

Nam, Y. J., Ryu, J., Park, C., & Ahn, J. S. (2004). A network bandwidth

computation technique for IP storage with QoS guarantees. In IFIP

International Conference on Network and Parallel Computing (pp. 473-

480). Springer, Berlin, Heidelberg.

Named, H., & Al-Shaer, E. (2006). Dynamic rule-ordering optimization for

high-speed firewall filtering. Proceedings of the 2006 ACM Symposium on

Information, Computer and Communications Security, ASIACCS ’06,

2006, 332–342. https://doi.org/10.1145/1128817.1128867

Narale, S. A. (2015). Cloud computing techniques helps to meet QOS :

International Journal of Advanced Computational Engineering and

Networking,(12), 87–90.

Nedunchezhian, R., & Vijayakumar, V. (2016). Classifier with Temporal

characteristics. International Journal of Innovative Research in Science,

Engineering and Technology,6(2),19–25.

Neto, A. J. R. and N. L. S. Da Fonseca. (2007). “Um estudo comparativo do

desempenho dos protocolos iSCSI e Fibre Channel.” IEEE Latin America

Transactions, 5(3), 151–157.

Neto, A.J.R., & Da Fonseca, N.L.S. (2007). Um estudo comparativo do

desempenho dos protocolos iSCSI e Fibre Channel [A study of the

performance of the iSCSI and fiber channel protocols]. IEEE Latin

America Transactions, 5(3), 151-157.

https://doi.org/10.1109/TLA.2007.4378498

Nleya, B., & Mutsvangwa, A. (2018). Enhanced congestion management for

minimizing network performance degradation in OBS networks. SAIEE

Africa Research Journal, 109(1), 48-57.

Noertjahyana, A., Palit, H. N., Chandra, R., Andjarwirawan, J., Puspa, L.,

Chandra, D., … Puspa, L. (2020). ScienceDirect ScienceDirect

ScienceDirect Comparative Analysis of NFS and iSCSI Protocol

Performance on Comparative Analysis of NFS Cinder and iSCSI Protocol

Performance on OpenStack Technology OpenStack Cinder Technology.

Procedia Computer Science, 171(2019), 1498–1506.

https://doi.org/10.1016/j.procs.2020.04.160

Noorshams, Q., Kounev, S., & Reussner, R. (2012). Experimental evaluation of

the performance-influencing factors of virtualized storage systems.

In Computer Performance Engineering (pp. 63-79). Springer, Berlin,

Heidelberg.

Nosheen, S., & Khan, J. Y. (2021). Quality of Service-and Fairness-Aware

Resource Allocation Techniques for IEEE802.11ac WLAN. IEEE Access,

252

9, 25579–25593. https://doi.org/10.1109/ACCESS.2021.3051983

Nunome, A., Hirata, H., & Shibayama, K. (2014, August). A distributed storage

system with dynamic tiering for iSCSI environment. In 2014 IIAI 3rd

International Conference on Advanced Applied Informatics (pp. 644-649).

IEEE.

Aduragbemi, O. (2018). Traffic Shaping for Congestion Control. Retrieved

from https://1library.net/document/ydxjjo1z-traffic-shaping-for-

congestion-control.html.

Ojijo, M. O., & Falowo, O. E. (2020). a Survey on Slice admission Control

Strategies and Optimization Schemes in 5G Network. IEEE Access, 8,

14977–14990. https://doi.org/10.1109/aCCESS.2020.2967626

Osama, S.(2011).Storage area network implementation on an educational

institute network computer networking and communication. World

Comput Sci Inform Tech J 1(7):292–296

Ou, Z., Hwang, Z. H., Chen, F., Wang, R., & Ylä-Jääski, A. (2015). Is cloud

storage ready? A comprehensive study of IP-based storage systems.

In 2015 IEEE/ACM 8th International Conference on Utility and Cloud

Computing (UCC) (pp. 1-10). IEEE.

Pan, Q., Huang, K., Tang, H., & You, W. (2018). A network slicing deployment

method for guaranteeing service performance. 2018 IEEE 4th

International Conference on Computer and Communications, ICCC 2018,

579–584. https://doi.org/10.1109/CompComm.2018.8781076

Paricio, A., & Lopez-Carmona, M. A. (2021). Application of Traffic Weighted

Multi-Map Optimization Strategies to Traffic Assignment. IEEE Access,

9, 28999–29019. https://doi.org/10.1109/ACCESS.2021.3058508

Park, S., Kim, Y., Jeong, S., Hong, C., & Kang, T. (2015). A Case Study on

Effective Technique of Distributed Data Storage for Big Data Processing

in the Wireless Internet Environment. Wireless Personal Communications.

https://doi.org/10.1007/s11277-015-2794-3

Parks, L., & Peters, W. (2022). Natural Language Processing in Mixed-methods

Text Analysis: A Workflow Approach. International Journal of Social

Research Methodology, 00(00), 1–13.

https://doi.org/10.1080/13645579.2021.2018905

Paul, A. K., Tachibana, A., & Hasegawa, T. (2016). An Enhanced Available

Bandwidth Estimation Technique for an End-to-End Network Path. IEEE

Transactions on Network and Service Management, 13(4), 768–781.

https://doi.org/10.1109/TNSM.2016.2572212

Paulraj, J. P. I., & Kannigadevi, R. (2014). Efficient Resource Provisioning

Using Virtualization Technology in Cloud Environment. International

Journal of Innovative Research in Science, Engineering and Technology,

3(3), 2200–2205.

253

Peng, Y., Liu, Q., & Varman, P. (2019, August). Latency Fairness Scheduling

for Shared Storage Systems. In 2019 IEEE International Conference on

Networking, Architecture and Storage (NAS) (pp. 1-8). IEEE.

Peng, Y., Liu, Q., & Varman, P. (2019). Scalable QoS for Distributed Storage

Clusters using Dynamic Token Allocation. IEEE Symposium on Mass

Storage Systems and Technologies, 2019-May, 14–27.

https://doi.org/10.1109/MSST.2019.00-19

Peng, Y., & Varman, P. (2018). BQueue: A coarse-grained bucket QoS

scheduler. Proceedings - 18th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, CCGRID 2018, 93–102.

https://doi.org/10.1109/CCGRID.2018.00024

Peng, Y., & Varman, P. (2020). PTrans: A Scalable Algorithm for Reservation

Guarantees in Distributed Systems. Annual ACM Symposium on

Parallelism in Algorithms and Architectures, 441–452.

https://doi.org/10.1145/3350755.3400273

Ppallan, J. M., Arunachalam, K., Gantha, S. S., Jaiswal, S., Song, S., & Nigam,

A. (2021). A Method for Enabling Context-Awareness at Transport Layer

for Improved Quality-of-Service Control. IEEE Access, 9, 123987–

123998. https://doi.org/10.1109/ACCESS.2021.3110266

Preethi, B. (2017). An Approach to Guarantee Quality of Service & Future

Enhancement of Storage Area Network. International Journal of

Computer Science and Technology, 8, 0976-8491.

Puters, E. C. O. M. (2012). The History of Storage Systems. Proceedings of the

IEEE, 100, 1433–1440. https://doi.org/10.1109/JPROC.2012.2189787

Qian, Y., Li, X., Ihara, S., Zeng, L., Kaiser, J., Süß, T., & Brinkmann, A. (2017).

A configurable rule based classful token bucket filter network request

scheduler for the lustre file system. Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, SC 2017. https://doi.org/10.1145/3126908.3126932

Rajan, M. S., Mesfin, A., & Sando, S. (2020). An Effective and Active

Bandwidth Distribution in Networked Control Systems. International

Journal of Engineering and Advanced Technology, 9(4), 2150–2155.

https://doi.org/10.35940/ijeat.d8983.049420

Ramadan, H. H., & Kashyap, D. (2017). Quality of service (QoS) in cloud

computing. International Journal of Computer Science and Information

Technologies (IJCSIT), 8(3), 318-320.

Ramaswamy, P. (2008). Provisioning task based symmetric QoS in iSCSI

SAN (Doctoral dissertation, Wichita State University).

Randrianantenaina, I., Dahrouj, H., Elsawy, H., & Alouini, M. S. (2017).

Interference management in full-duplex cellular networks with partial

spectrum overlap. IEEE Access, 5, 7567-7583.

254

Raschellà, A., Bouhafs, F., Seyedebrahimi, M., Mackay, M., & Shi, Q. (2017).

Quality of Service Oriented Access Point Selection Framework for Large

Wi-Fi Networks. IEEE Transactions on Network and Service

Management, 14(2), 441–455.

https://doi.org/10.1109/TNSM.2017.2678021

Rashelbach, A., Rottenstreich, O., & Silberstein, M. (2020). A Computational

Approach to Packet Classification. SIGCOMM 2020 - Proceedings of the

2020 Annual Conference of the ACM Special Interest Group on Data

Communication on the Applications, Technologies, Architectures, and

Protocols for Computer Communication, 542–556.

https://doi.org/10.1145/3387514.3405886

Ravali, P. (2013). A comparative evaluation of OSI and TCP/IP

models. International Journal of Science and Research, 4(7), 514-521.

Ren, S. (2017). A Service Curve of Hierarchical Token Bucket Queue

Discipline on Soft-Ware Defined Networks Based on Deterministic

Network Calculus: An Analysis and Simulation. Journal of Advances in

Computer Networks, 5(1), 8–12.

https://doi.org/10.18178/jacn.2017.5.1.232

Ren, S., Feng, Q., & Dou, W. (2017). An end-to-end qos routing on software

defined network based on hierarchical token bucket queuing discipline.

ACM International Conference Proceeding Series, Part F1287, 0–4.

https://doi.org/10.1145/3089871.3089883

Ren, Y., Li, T., Yu, D., Jin, S., & Robertazzi, T. (2014). Design,

implementation, and evaluation of a NUMA-aware cache for iSCSI storage

servers. IEEE Transactions on Parallel and Distributed Systems, 26(2),

413-422.

Riabov, V. V. (2004). Storage Area Networks (SANs). The Internet

Encyclopedia. Vol. 3, Wiley & Sons, pp. 329-339.

Romli, M. A., Prayudi, Y., & Sugiantoro, B. (2019). Storage Area Network

Architecture to support the Flexibility of Digital Evidence

Storage. International Journal of Computer Applications, 975, 8887.

Sadiq, A. L. I. S., Alkazemi, B., Mirjalili, S., Ahmed, N., Khan, S., & Ali, I.

(2018). An Efficient IDS Using Hybrid Magnetic Swarm Optimization in

WANETs. IEEE Access, 6, 29041–29053.

https://doi.org/10.1109/ACCESS.2018.2835166

Saha, A. K., Si, M., Ni, K., Datta, S., Ye, P. D., & Gupta, S. K. (2020).

Ferroelectric thickness dependent domain interactions in FEFETs for

memory and logic: A phase-field model based analysis. Technical Digest

- International Electron Devices Meeting, IEDM, 2020-Decem, 4.3.1-

4.3.4. https://doi.org/10.1109/IEDM13553.2020.9372099

Salim, J. H. (2015). Linux Traffic Control Classifier-Action Subsystem

Architecture. Proceedings of Netdev 0.1.

255

Salim, J. H., & Bates, L. (2016). The CLASHoFIRES : Who ’ s Got Your Back ?

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

Salmani, V., & Shin, S. W. (2015, September). An empirical evaluation

methodology for iscsi storage networking. In 2015 IEEE 14th

International Symposium on Network Computing and Applications (pp.

216-225). IEEE.

Salomo, Y., Pratama, M., Choi, K. A. E. W. O. N., & Member, S. (2018).

Bandwidth Aggregation Protocol and Throughput-Optimal Scheduler for

Hybrid RF and Visible Light Communication Systems. IEEE Access, 6,

32173–32187. https://doi.org/10.1109/ACCESS.2018.2844874

Samadi, P., Member, S., Fiorani, M., Shen, Y., & Member, S. (2017). Flexible

Architecture and Autonomous Control Plane for Metro-Scale

Geographically Distributed Data Centers. Journal of Lightwave

Technology, 35(6), 1188–1196.

https://doi.org/10.1109/JLT.2017.2652480

Sanyoto, A. N., Perdana, D., & Bisono, G. (2019). Performance Evaluation of

Round Robin and Proportional Fair Scheduling Algorithm on 5G

Milimeter Wave Network for Node Density Scenarios. International

Journal of Simulation: Systems, Science & Technology, 1–6.

https://doi.org/10.5013/ijssst.a.20.02.17

Sarmah, S., & Sarma, S. K. (2019, March). A novel approach to prioritized

bandwidth management in 802.11 e WLAN. In 2019 IEEE 5th

International Conference for Convergence in Technology (I2CT) (pp. 1-

5). IEEE.

Sarmah, S., & Sarma, S. K. (2019). A Novel Approach to Prioritized Bandwidth

Management in 802.11e WLAN. 2019 IEEE 5th International Conference

for Convergence in Technology, I2CT 2019, 1–5.

https://doi.org/10.1109/I2CT45611.2019.9033871

Saunders, M., Lewis, P. and Thornhill, A. (2009).Research Methods for

Business Students fifth edition. Pearson, New York.

Saunders, M., Lewis, P., & Thornhill, A.(2007). Research methods for Business

Students 4th edition. Pearson Education Limited, England.

Sboui, L., Member, S., & Ghazzai, H. (2016). On Green Cognitive Radio

Cellular Networks : Dynamic Spectrum and Operation Management. IEEE

Access, 4, 4046–4057. https://doi.org/10.1109/ACCESS.2016.2592178

Scazzariello, M., Ariemma, L., & Caiazzi, T. (2020). Kathará: A Lightweight

Network Emulation System. Proceedings of IEEE/IFIP Network

Operations and Management Symposium 2020: Management in the Age of

Softwarization and Artificial Intelligence, NOMS 2020, 10–11.

https://doi.org/10.1109/NOMS47738.2020.9110351

Sekaran, U. (2003) Research Methods for Business: A Skill-Building Approach.

256

4th Edition, John Wiley & Sons, New York.

Sharma, A. K., & Behera, A. K.(2017).Modified random early detection

algorithm to enhance the performance of bursty network traffic. Research

Journal of Computer and Information Technology Sciences.ISSN, 2320,

6527.

Sheltami, T. R. (2019). A Survey on Autonomic Provisioning and Management

of QoS in SDN Networks. IEEE Access, 7, 73384–73435.

https://doi.org/10.1109/ACCESS.2019.2919957

Shen, J., Xia, J., Zhang, X., & Jia, W. (2017). Sliding block-based hybrid feature

subset selection in network traffic. IEEE Access, 5, 18179-18186.

Shimano, S., Nunome, A., Hirata, H., & Shibayama, K. (2015, July). An

information propagation scheme for an autonomous distributed storage

system in iSCSI environment. In 2015 3rd International Conference on

Applied Computing and Information Technology/2nd International

Conference on Computational Science and Intelligence (pp. 142-147).

IEEE.

Shirvani Moghaddam, S., & Moghaddam, K. S. (2022). A General Framework

for Sorting Large Data Sets Using Independent Subarrays of

Approximately Equal Length. IEEE Access, 10, 11584–11607.

https://doi.org/10.1109/ACCESS.2022.3145981

Shue, D., Freedman, M. J., & Shaikh, A. (2012). Performance Isolation and

Fairness for {Multi-Tenant} Cloud Storage. In 10th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 12) (pp. 349-

362).

Simiscuka, A. A., Bezbradica, M., & Muntean, G. M. (2017, June). Performance

analysis of the quality of service-aware networking scheme for smart

internet of things gateways. In 2017 13th International Wireless

Communications and Mobile Computing Conference (IWCMC) (pp. 1370-

1374). IEEE.

Siregar, B., Fadli, A., & Hizriadi, A. (2020). Controlling of Quality of Service

in Campus Area Network Using OpenDaylight with Hierarchical Token

Bucket Method. 7th International Conference on ICT for Smart Society:

AIoT for Smart Society, ICISS 2020 - Proceeding, 1–5.

https://doi.org/10.1109/ICISS50791.2020.9307599

Song, M. (2018). Minimizing Power Consumption in Video Servers by the

Combined Use of Solid-State Disks and Multi-Speed Disks. IEEE Access,

6, 25737–25746. https://doi.org/10.1109/ACCESS.2018.2832221

Sugeng, W., Istiyanto, J. E., Mustofa, K., & Ashari, A. (2015). The impact of

QoS changes towards network performance. Int. J. Comput. Networks

Commun. Secur, 3(2), 48-53.

Sun, H., Yu, H., & Fan, G. (2020). QoS-Aware Task Placement With Fault-

257

Tolerance in the Edge-Cloud. IEEE Access, 8, 77987–78003.

https://doi.org/10.1109/ACCESS.2020.2977089

Sun, J., & Cho, H. (2022). A Lightweight Optimal Scheduling Algorithm for

Energy-Efficient and Real-Time Cloud Services. IEEE Access, 10, 5697–

5714. https://doi.org/10.1109/ACCESS.2022.3141086

Sun, Z., Pedretti, G., Mannocci, P., Ambrosi, E., Bricalli, A., & Ielmini, D.

(2020). Time Complexity of In-Memory Solution of Linear Systems. IEEE

Transactions on Electron Devices, 67(7), 2945–2951.

https://doi.org/10.1109/TED.2020.2992435

Suresh, L., Canini, M., Schmid, S., & Feldmann, A. (2015). C3: Cutting tail

latency in cloud data stores via adaptive replica selection. In 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

15) (pp. 513-527).

Suresh, N., & Bai, B. M. (2016). Predictive Modelling of Tree Rule Firewall for

the Efficient Packet Filtering. International Journal of Computer Science

and Information Security, 14(10), 189.

Surucu, L., & Maslakci, A. (2020). View of VALIDITY AND RELIABILITY

IN QUANTITATIVE RESEARCH | Business & Management Studies: An

International Journal. Business & Management Studies: An International

Journal , pp. 2694–2726. Retrieved from

https://www.bmij.org/index.php/1/article/view/1540/1365

Thi, V., & Nha, T. (2021). Understanding Validity and Reliability From

Qualitative and Quantitative Research Traditions. Vnu Journal of Foreign

Studies, 37(3), 1–10. Retrieved from https://doi.org/10.25073/2525-

2445/vnufs.4672

Topalova, I., & Radoyska, P. (2018). Control of traffic congestion with

weighted random early detection and neural network

implementation. ICAS 2018, 16.

Toyoda, M., Yamaguchi, S., & Oguchi, M. (2005). TCP congestion window

controlling algorithms on iSCSI sequential read access. Proceedings -

International Workshop on Biomedical Data Engineering, BMDE2005,

2005, 1271–1274. https://doi.org/10.1109/ICDE.2005.292

Trabelsi, Z., & Zeidan, S. (2012). Multilevel early packet filtering technique

based on traffic statistics and splay trees for firewall performance

improvement. IEEE International Conference on Communications, 1074–

1078. https://doi.org/10.1109/ICC.2012.6364218

Truong-huu, T., Member, S., Gurusamy, M., & Member, S. (2017). Dynamic

Flow Scheduling With Uncertain Flow Duration in Optical Data Centers.

IEEE Access, 5, 11200–11214.

https://doi.org/10.1109/ACCESS.2017.2716345

Valenzuela, J. L., Monleon, A., San Esteban, I., Portoles, M., & Sallent, O.

258

(2004, September). A hierarchical token bucket algorithm to enhance QoS

in IEEE 802.11: proposal, implementation and evaluation. In IEEE 60th

Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 (Vol. 4, pp.

2659-2662). IEEE.

Vasu, A. K., & Ganesh, A. (2014). Improving Firewall Performance by

Eliminating Redundancies In Access Control Lists. Priya Ayyappan &

Anirudhan Sudarsan International Journal of Computer Networks (IJCN),

(6), 92.

Vigneri, L., Paschos, G., & Mertikopoulos, P. (2019). Large-Scale Network

Utility Maximization: Countering Exponential Growth with Exponentiated

Gradients. Proceedings - IEEE INFOCOM, 2019-April, 1630–1638.

https://doi.org/10.1109/INFOCOM.2019.8737600

Vincenzi, M., Lopez-Aguilera, E., & Garcia-Villegas, E. (2021). Timely

Admission Control for Network Slicing in 5G with Machine Learning.

IEEE Access, 9, 127595–127610.

https://doi.org/10.1109/ACCESS.2021.3111143

Vishvanath, R., & Nasreen, A. Survey on Recent Technology of Storage Area

Network and Network Attached Storage Protocols. Paper, For

International Journal Of Innovative Research In Electrical, Electronics,

Instrumentation And Control Engineering, 2(8).

Vulimiri, A., Godfrey, P. B., Mittal, R., Sherry, J., Ratnasamy, S., & Shenker,

S. (2013). Low latency via redundancy. CoNEXT 2013 - Proceedings of

the 2013 ACM International Conference on Emerging Networking

Experiments and Technologies, 283–294.

https://doi.org/10.1145/2535372.2535392

Wachs, M., Abd-El-Malek, M., Thereska, E., & Ganger, G. R. (2007, February).

Argon: Performance Insulation for Shared Storage Servers. In FAST (Vol.

7, pp. 5-5).

Wang, A., Venkataraman, S., Alspaugh, S., Katz, R., & Stoica, I. (2012,

October). Cake: enabling high-level SLOs on shared storage systems.

In Proceedings of the Third ACM Symposium on Cloud Computing (pp. 1-

14).

Wang, B., Sun, Y., & Cao, Q. I. (2018). Bandwidth Slicing for Socially-Aware

D2D Caching in SDN-Enabled Networks. IEEE Access, 6, 50910–50926.

https://doi.org/10.1109/ACCESS.2018.2867542

Wang, C., Wu, Y., Wang, Z., & Xu, T. (2013, December). ISCSI-based data

protection system for virtual machine. In Proceedings 2013 International

Conference on Mechatronic Sciences, Electric Engineering and Computer

(MEC) (pp. 2085-2089). IEEE.

Wang, J., Zhao, Z., Xu, Z., Zhang, H., Li, L., & Guo, Y. (2015). I-sieve: An

inline high performance deduplication system used in cloud

storage. Tsinghua Science and Technology, 20(1), 17-27.

259

Wang, K., Member, S., Li, J., & Wu, J. U. N. (2018). QoS-Predicted Energy

Efficient Routing for Information-Centric Smart Grid : A Network

Calculus Approach. IEEE Access, 6, 52867–52876.

https://doi.org/10.1109/ACCESS.2018.2870929

Wang, P. A. N., Chen, X., Ye, F., & Sun, Z. (2019). A Survey of Techniques

for Mobile Service Encrypted Traffic Classification Using Deep Learning.

IEEE Access, 7, 54024–54033.

https://doi.org/10.1109/ACCESS.2019.2912896

Wang, P. A. N., & Ye, F. (2018). Datanet : Deep Learning Based Encrypted

Network Traffic Classification in SDN Home Gateway. IEEE Access, 6,

55380–55391. https://doi.org/10.1109/ACCESS.2018.2872430

Wang, P., Gilligan, R. E., Green, H., & Raubitschek, J. (2003, April). IP SAN-

from iSCSI to IP-addressable Ethernet disks. In 20th IEEE/11th NASA

Goddard Conference on Mass Storage Systems and Technologies,

2003.(MSST 2003). Proceedings. (pp. 189-193). IEEE.

Wang, Pu, Yan, Z., Wang, N., & Zeng, K. (2022). Resource Allocation

Optimization for Secure Multi-device Wirelessly Powered Backscatter

Communication with Artificial Noise. IEEE Transactions on Wireless

Communications, PP, 1. https://doi.org/10.1109/TWC.2022.3162137

Wang, R., Kang, W., Liu, G., Ma, R., & Li, B. (2020). Admission Control and

Power Allocation for NOMA-Based Satellite Multi-Beam Network. IEEE

Access, 8, 33631–33643. https://doi.org/10.1109/ACCESS.2020.2973395

Wang, Yitu, Wang, W., Cui, Y., Shin, K. G., & Zhang, Z. (2018). Distributed

Packet Forwarding and Caching Based on Stochastic Network Utility

Maximization. IEEE/ACM Transactions on Networking, 26(3), 1264–

1277. https://doi.org/10.1109/TNET.2018.2825460

Wang, Y., Xu, F., Chen, Z., Sun, Y., & Zhang, H. (2018). An application-level

QoS control method based on local bandwidth scheduling. Journal of

Electrical and Computer Engineering, 2018.

Wang, Z. (2018). DyCache : Dynamic Multi-Grain Cache Management for

Irregular Memory Accesses on GPU. IEEE Access, 6, 38881–38891.

https://doi.org/10.1109/ACCESS.2018.2818193

Winterton, J. (2008). Business Research Methods ALAN BRYMAN and

EMMA BELL. Oxford: Oxford University Press, 2007. xxxii+ 786 pp.£

34.99 (pbk). ISBN 9780199284986. Management Learning, 39(5), 628-

632.

Workshops, P. (2014). Can we identify NAT behavior by analyzing Traffic

Flows?. In 2014 IEEE Security and Privacy Workshops (pp. 132-139).

IEEE.

Wu, B., Wu, B., Yin, H., Liu, A., Liu, C., & Xing, F. (2017). Investigation and

System Implementation of Flexible Bandwidth Switching for a Software-

260

Defined Space Information Network. IEEE Photonics Journal, 9(3), 1–14.

https://doi.org/10.1109/JPHOT.2017.2705134

Wu, J. C., & Brandt, S. A. (2006, May). The design and implementation of

AQuA: an adaptive quality of service aware object-based storage device.

In Proceedings of the 23rd IEEE/14th NASA Goddard Conference on Mass

Storage Systems and Technologies (pp. 209-218).

Wu, Y., Wang, F., Hua, Y., Member, S., & Feng, D. (2017). I / O Stack

Optimization for Efficient and Scalable Access in FCoE-Based SAN

Storage. IEEE Transactions on Parallel and Distributed Systems, 28(9),

2514–2526. https://doi.org/10.1109/TPDS.2017.2685139

Wu, Z., Yu, C., & Madhyastha, H. V. (2015). CosTLO: Cost-effective

redundancy for lower latency variance on cloud storage services.

Proceedings of the 12th USENIX Symposium on Networked Systems

Design and Implementation, NSDI 2015, 543–557.

Xiong, B., Wu, R., Zhao, J., & Wang, J. (2019). Efficient differentiated storage

architecture for large-scale flow tables in software-defined wide-area

networks. IEEE Access, 7, 141193–141208.

https://doi.org/10.1109/ACCESS.2019.2942208

Xu, W. (2018). A Novel Data Reuse Method to Reduce Demand on Memory

Bandwidth and Power Consumption For True Motion Estimation. IEEE

Access, 6, 10151–10159. https://doi.org/10.1109/ACCESS.2018.2807406

Yahya-Imam, M. K., Sellapan, P., & Devi, V. (2014). An enhanced bandwidth

Management scheme for improved quality of service in network

communication system. Int. J. Electron. Electr. Eng, 2(2), 147-152.

Yakti, I., & Salameh, W. A. (2012). ISCSI (internet small computer system

interface) for your startup. International Journal of Information and

Communication Technology Research, 20(3).

Yan, C., Zhang, Y., Zhong, W., Zhang, C., & Xin, B. (2022). A truncated SVD-

based ARIMA model for multiple QoS prediction in mobile edge

computing. Tsinghua Science and Technology, 27(2), 315–324.

https://doi.org/10.26599/TST.2021.9010040

Yang, C. T., Liu, J. C., Ranjan, R., Shih, W. C., & Lin, C. H. (2013). On

construction of heuristic QoS bandwidth management in

clouds. Concurrency and Computation: Practice and Experience, 25(18),

2540-2560. https://doi.org/10.1002/cpe

Yang, H., Li, B., Liu, G., & Ma, R. (2018). Physical-layer network coding based

multi-user cooperative relay transmission with multi-antennas in cognitive

wireless networks. IEEE Access, 6, 40189-40197.

Yu, Y. A. O., Guo, L. E. I., Liu, Y. E., Zheng, J., & Zong, Y. U. E. (2018). An

Efficient SDN-Based DDoS Attack Detection and Rapid Response

Platform in Vehicular Networks. IEEE Access, 6, 44570–44579.

261

https://doi.org/10.1109/ACCESS.2018.2854567

Zeng, Y. I., & Gu, H. (2019). Deep-Full-Range : A Deep Learning Based

Network Encrypted Traffic Classification and Intrusion Detection

Framework. 7. IEEE Access, 7, 45182-45190.

https://doi.org/10.1109/ACCESS.2019.2908225

Zhang, F., Deng, R., & Liang, H. (2018). An Optimal Real-Time Distributed

Algorithm for Utility Maximization of Mobile Ad Hoc Cloud. IEEE

Communications Letters, 22(4), 824–827.

https://doi.org/10.1109/LCOMM.2018.2804928

Zhang, S., Lei, W., Zhang, W. E. I., Guan, Y., & Li, H. A. O. (2019). Congestion

Control and Packet Scheduling for Multipath Real Time Video Streaming.

IEEE Access, 7, 59758–59770.

https://doi.org/10.1109/ACCESS.2019.2913902

Zhang, W., Wang, C., Xiao, F., Xiong, N. N., & Chang, J. (2019). Reliable

Storage System with Priority Filter and Load Balance Collection Model

for Large Scale Sensor Networks. IEEE Access, 7, 184078–184089.

https://doi.org/10.1109/ACCESS.2019.2960075

Zhang, Xian, & Peng, M. (2019). Testbed Design and Performance Emulation

in Fog Radio Access Networks. IEEE Network, 33(3), 49–57.

https://doi.org/10.1109/MNET.2019.1800378

Zhang, Xiaolu, Li, D., Li, W. W., & Zhao, W. (2019). An Optimal Dynamic

Admission Control Policy and Upper Bound Analysis in Wireless Sensor

Networks. IEEE Access, 7, 53314–53329.

https://doi.org/10.1109/ACCESS.2019.2912396

Zhao, F., Ma, W., Zhou, M., & Zhang, C. (2018). A Graph-Based QoS-Aware

Resource Management Scheme for OFDMA Femtocell Networks. IEEE

Access, 6, 1870–1881. https://doi.org/10.1109/ACCESS.2017.2780520

Zhao, L., Inoue, Y., & Yamamoto, H. (2004, July). Delay Reduction for Liner-

Search Based Packet Filters. In ITC-CSCC: International Technical

Conference on Circuits Systems, Computers and Communications (pp.

160-163).

Zhao, L., Shimae, A., & Nagamochi, H. (2007, July). Linear-tree rule structure

for firewall optimization. In Communications, Internet, and Information

Technology (pp. 67-72).

Zhao, Y. (2018). An Energy Efficient and QoS Aware Routing Algorithm Based

on Data Classification for Industrial Wireless Sensor Networks. IEEE

Access, 6, 46495–46504. https://doi.org/10.1109/ACCESS.2018.2866165

Zheng, X., Jia, J., Guo, S., Chen, J., Sun, L., Xiong, Y., & Xu, W. (2021). Full

Parameter Time Complexity (FPTC): A Method to Evaluate the Running

Time of Machine Learning Classifiers for Land Use/Land Cover

Classification. IEEE Journal of Selected Topics in Applied Earth

262

Observations and Remote Sensing, 14, 2222–2235.

https://doi.org/10.1109/JSTARS.2021.3050166

Zhou, Z., Yan, Y., Berger, M., & Ruepp, S. (2018). Analysis and Modeling of

Asynchronous TrafficShaping in Time Sensitive Networks. 2018 14th

IEEE International Workshop on Factory Communication Systems

(WFCS), 1–4. https://doi.org/10.1109/WFCS.2018.8402376

Zhu, S., Sun, Z., Lu, Y., Zhang, L., Min, G., & Member, S. (2019). Centralized

QoS Routing Using Network Calculus for SDN-Based Streaming Media

Networks. IEEE Access, 7, 146566–146576.

https://doi.org/10.1109/ACCESS.2019.2943518

Zhu, T., Tumanov, A., Kozuch, M. A., Harchol-Balter, M., & Ganger, G. R.

(2014, November). Prioritymeister: Tail latency qos for shared networked

storage. In Proceedings of the ACM Symposium on Cloud Computing (pp.

1-14).

Zuberek, W. M., & Strzeciwilk, D. (2018). Modeling traffic shaping and traffic

policing in packet-switched networks. Journal of Computer Sciences and

Applications, 6(2), 75-81.

263

Appendix A: Research Permit

264

Appendix B: Wireshark Packets Capture

265

Appendix C: Parkdale Output Screen

266

Appendix D: First Publication

267

An Enhanced List Based Packet Classifier for Performance Isolation in

Internet Protocol Storage Area Networks.
 Abstract: Consolidation of storage into IP SANs (Internet protocol storage area network) has

led to a combination of multiple workloads of varying demands and importance. To ensure that

users get their Service level objective (SLO) a technique for isolating workloads is required.

Solutions that exist include cache partitioning and throttling of workloads. However, all these

techniques require workloads to be classified in order to be isolated. Previous works on

performance isolation overlooked the classification process as a source of overhead in

implementing performance isolation. However, it’s known that linear search based classifiers

search linearly for rules that match packets in order to classify flows which results in delays

among other problems especially when rules are many. This paper looks at the various limitation

of list based classifiers. In addition, the paper proposes a technique that includes rule sorting,

rule partitioning and building a tree rule firewall to reduce the cost of matching packets to rules

during classification. Experiments were used to evaluate the proposed solution against the

existing solutions and proved that the linear search based classification process could result in

performance degradation if not optimized. The results of the experiments showed that the

proposed solution when implemented would considerably reduce the time required for matching

packets to their classes during classification as evident in the throughput and latency

experienced.

 Index Terms: Performance Isolation, Storage Area Network, Throttling, Optimization,

Metrics
Methods:

This study embarked on optimizing the process of packet matching during classification process

for linear search based classifier. The methods of sorting the rule list, partitioning the rule list,

jump search and building a linear tree rule structure to optimize the classification process.

To begin with, the system to be emulated was modelled for comparison purposes. To obtain the

standard SLO requirements for each class of users, we used Table 2 and equation (3) and (4) to

derive the SLO for classes of users based on the IOPs, block size and queue depth. The values

for the SLO are throughput in Kb/s followed by IOPS and then response time. For a block size

of 4kb the SLO for task, knowledge and power users is as follows; task

users(20kb/s,5IOPS,6.4ms), Knowledge users(60kb/s,15IOPS,1.6-3.2ms) and power

users(100kb/s,25IOPS,1.3ms). The same case applies for 64kb and 1 Mb block sizes.

Results

An Enhanced List Based Packet Classifier for Performance Isolation in Internet Protocol

Storage Area Networks was found to have an improvement by 20% in terms of operational cost

compared to conventional list based packet classfier.In addition it was found to have a higher

accuracy by 33% compared to conventional list based packet classifiers.

Conclusion and Future work

The proposed solution has been tested and compared with traditional implementation of a linear

search based classifier and established that the proposed solution gives better performance in

terms of throughput and response time when used to classify traffic for performance isolation.

The proposed solution was tested on an IPSAN and was found to be more suitable than the

traditional implementation of linear search. In future we would also like to explore techniques

of using performance isolation in providing availability and reliability guarantees. In addition,

we would like to implement our proposed solution in non-storage systems where performance

isolation is required

268

Appendix D: Second Publication

269

HPDDRR: Optimized Scheduler Shaper for Bandwidth Management and

Traffic Shaping in Internet Protocol Storage Area Networks.

ABSTRACT
Providing QOS (quality of service) is a vital problem in storage area networks. In this paper a technique

known as HPDDRR(hierarchical priority based dynamic deficit round robin) which is scheduler shaper

that uses hit ration for flow prioritization and a dynamic quantum calculated based on the priority for

scheduling is presented. Based on the applications used, packets may vary in sizes and belonging to

different priority classes. To ensure that big low priority packets don‟t delay small high priority packets

this study uses hierarchical priority queues instead of FIFO (first in first out) queues for scheduling. This

allows for performance isolation as well as resource sharing. The evaluation results proof that HPDDRR

is able to optimize bandwidth utilization as well as latency for competing traffic flows under Service level

objectives constraints.

Keywords
Dynamic Bandwidth management, Burst Handling, ISCSI, IP SAN, Quantum, Policing.

Methodology
In achieving bandwidth management and traffic shaping the study adopted an experimental research

design. Experiment is a research instrument that involves finding causal relationships between variables

through the effect of manipulating one variable on another. It is suitable for phenomenon with

known variables or initial hypothesis that aimed at testing or manipulating a theory .It is also used to test

and answer „how‟ and „why‟ research questions and lies in the deductive approach and positivism

philosophy domain. Experiments were set up to evaluate the proposed system on bandwidth allocation,

bandwidth borrowing and burst handling. The proposed optimization of bandwidth management and

traffic shaping was evaluated using the throughput and latency QOS metrics.
Results: HPDDRR was found to be able to allocate bandwidth based on the pi values. The larger the pi

value the larger the allocation. HPDDRR was also found to adopt quickly to network changes with a

convergence time of 10 seconds.

Conclusion and Future Work
Evaluation done on HPDDRR shows that it is able to provide proportional allocation of bandwidth to

classes of users based on priority and adopt the utilization experienced by traffic classes of users based on

network conditions .HPDDRR has also been proven through experiments that it is able to absorb

bursts from classes of user‟s flows. A hierarchical shaper can support more precise scheduling for the high

rate traffic, this can significantly reduce cell shaping and jitter relative to existing approaches. With the

hierarchical structure the sorting granularity for connection is reduced due to grouping. This reduces the

implementation overhead and interference between competing connections. As future work the research

would like to test the performance of HPDDRR on non-storage systems.

